Кососиметрична матриця

Косо-симетричною (чи антисиметричною) називають квадратну матрицю, елементи якої симетричні зі знаком мінус щодо головної діагоналі, тобто:

Тобто:

Поняття розглядають переважно для матриць над кільцем характеристика якого не є рівною 2. Якщо характеристика є рівною 2, то кососиметричні матриці у попередньому означенні є еквівалентними симетричним. Іноді у цьому випадку додатково вимагається умова щоб усі елементи на діагоналі були рівні 0.

ПрикладиРедагувати

Прикладами кососиметричних матриць є

  •   адже  
  •   оскільки  .


ВластивостіРедагувати

  • Сума двох кососиметричних матриць і добуток кососиметричної матриці на скаляр є кососиметричними матрицями. Тобто кососиметричні матриці утворюють лінійний підпростір простору квадратних матриць заданого порядку. Розмірність цього підпростору є рівною  
  • Будь-яка квадратна матриця може в єдиний спосіб бути записаною як сума кососиметричної і симетричної матриць. А саме, якщо   то можна записати:
 
де перший доданок є кососиметричною матрицею, а другий — симетричною.
  • Для визначника кососиметричної матриці виконується рівність:
 
Як наслідок визначник кососиметричної матриці (характеристика елементів якої не є рівною 2) завжди є рівним 0.
  • Якщо до всіх елементів матриці додати однаковий елемент, то визначник одержаної матриці буде рівним визначнику самої матриці. Тобто, якщо A є кососиметричною матрицею і E — квадратною матрицею того ж порядку усі елементи якої рівні 1, то для будь-якого x виконується рівність  
  • Ранг кососиметричної матриці завжди парний.
  • Визначник кососиметричної матриці парного порядку, як многочлен від її елементів є рівний квадрату многочлена який називається пфаффіаном матриці:
 

Матриці з дійсними елементамиРедагувати

 


Дивись такожРедагувати

ДжерелаРедагувати