Ірраціональне число

Числа, які неможливо записати звичайним дробом
(Перенаправлено з Ірраціональні числа)

Ірраціональні числа (позначення для множини — ) — це всі дійсні числа, що не є раціональними: , — тобто не можуть бути записані як відношення цілих чисел (, ), а лише нескінченними неперіодичними десятковими дробами.

Математична константа пі (π) є ірраціональним числом.
Число є ірраціональним числом.

Уперше І. ч. постали в геометрії під час вивчення довжин відрізків піфагорцями, які, як стверджує легенда[джерело?], виявили неспівмірність з одиницями вимірювання деяких геометричних величин. Оскільки це суперечило їхній філософії (цілком побудованій на натуральних числах), відкриття якнайсуворіше приховували, навіть покаравши на смерть одного зі своїх братів — Гіппаса Метапонтського, який (за різними джерелами) чи то першим знайшов, чи то розголосив цей факт.

Відмінності записування дійсних чисел

ред.

Десятковий дріб будь-якого раціонального числа має періодично повторювану частину (зокрема це можуть бути нулі, як у скінченних дробів і цілих чисел), н-д:

  •  ,[1] що означає «нуль цілих і три в періоді» (довжина періоду — один), тобто   повторюється нескінчену кількість разів;
  •  , що означає «три цілих і сто сорок дві тисячі вісімсот п'ятдесят сім у періоді» (довжина періоду — шість), тобто   повторюється нескінчену кількість разів;
  •  , що означає «дві цілих, нуль сотих і сімдесят п'ять у періоді» (довжина періоду — два), тобто   повторюється нескінчену кількість разів;
  •  , скінченний дріб «дві цілих, п'ять десятих»,[2] тобто   повторюється нескінчену кількість разів;
  •  , ціле число «три еквівалентне двом цілим і дев'ять у періоді»,[3] тобто   повторюється нескінчену кількість разів.

Періодичність дробу можна вважати критерієм приналежності числа до множини раціональних чисел.

Розкладання І. ч. у десятковий дріб не позначається такою періодичністю. Наприклад, відомо, що число пі — ірраціональне та навіть трансцендентне, тому, хоча в його десятковому записі окремі цифри та їх комбінації повторюються, не існує групи цифр, яка б нескінченно повторювалася, утворюючи період.

Інший спосіб записування додатних дійсних чисел: за допомогою ланцюгових дробів. Відмінність полягає в тому, що ланцюгові дроби раціональних чисел скінченні, а І. ч. — нескінченні, хоча для квадратичних ірраціональностей ланцюговий дріб періодичний.

Приклади

ред.

Квадратні корені

ред.

Квадратний корінь з двох — це перше число, ірраціональність якого було доведено. Іншим відомим ірраціональним числом є золотий перетин. Квадратні корені усіх натуральних чисел, які не є квадратними числами, є ірраціональними.

Приклади

ред.
  — скінченний;
  — з періодом довжини один;
  — з періодом довжини два;
  (A001203 в енциклопедії цілих послідовностей [Архівовано 5 березня 2007 у Wayback Machine.]) — неперіодичний.

Філософське значення

ред.

Про існування неспівмірних відрізків знали вже древні математики: їм була відома, наприклад, неспівмірність діагоналі та сторони квадрата, що рівносильно ірраціональності числа   (перше знайдене І. ч.).

Піфагорове твердження, що всі речі є числа, відображало метафізичні уявлення стародавніх греків про Всесвіт як місце гармонії, яку власне можна описати відношеннями натуральних чисел. Так поєднання двох звуків, відношення частот яких є раціональним числом, дає приємне для вуха звучання.

З'ясування того, що   не є раціональним числом, призвело до глибокої кризи давньогрецької математики, яка полягала в усвідомлені факту існування математичних величин, які не можливо відобразити числами, а лише через геометричні побудови. Як наслідок — давньогрецька математика відмовилася від алгебраїчного підходу, на користь геометричного.

Властивості

ред.

Топологічні властивості  

ред.

Див. також

ред.

Примітки

ред.
  1. Тут використано англійську систему записування дробів без нулів. У пострадянських країнах для розділення цілої частини від дробної використовують кому замість крапки, а для позначення повторюваної частини — дужки замість верхньої риски.
  2. Десяткові дроби є нескінченними за побудовою, тому зрозуміло, що після певного десяткового знаку можуть стояти самі нулі ( ), відкиданням яких отримують скінченні дроби.
  3. Можемо записати як нескінченний періодичний дріб, оскільки з означення маємо, що  .
    Докладніше: 0,(9)

Література

ред.
  • Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2024. — 2403 с.(укр.)
  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (вид. Dover reprint of 1978), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 0507446