Діаметр

відрізок прямої, що проходить через центр кола і сполучає дві його точки
(Перенаправлено з Діаметер)

Діа́метр кола (дав.-гр. διάμετρος — поперечник[1]:стор.609) (позначається символом Ø) — відрізок прямої, що проходить через центр кола і сполучає дві його точки[2]. (на мал. відрізок АВ)

Коло з центром О,
AB — діаметр,
ОС — радіус

Також діаметр кола можна означити як найдовшу хорду кола.[3]

Обидва означення справедливі також і для сфери тривимірного простору.

За величиною діаметр дорівнює двом радіусам кола (сфери): .

Просторові тіла, що в поперечному перерізі мають форму кола чи кільця (циліндр, куля, тор, конус, порожній циліндр або труба), також мають діаметр.

Діаметр круглих тіл (циліндр, куля, тор) чи діаметр отворів круглого поперечного перерізу можна виміряти за допомогою інструментів: штангенциркуль, мікрометр, нутромір, мікрометричний нутромір.

Символ діаметра

ред.
 
Позначення отвору (валу) на кресленні

Для позначення діаметра отвору або валу на робочих креслениках деталей, використовують символ ⌀.[4]

 
Символ діаметра у QCad

Символ діаметра   схожий за розміром і написанням до «ø» (перекреслена мала літера «о»).

  • В Юнікод він знаходиться під номером 8960 (шістнадцяткове 2300), що може бути закодовано в HTML сторінках як чи . Хоча, коректне відображення цього символу малоймовірне, через те, що символ діаметра рідко додається в шрифти (ваш браузер відображає ⌀ в поточному шрифті).
  • в Microsoft Word символ можна отримати, натиснувши комбінацію клавіш Alt+8960
  • В LaTeX символ діаметра можна отримати за допомогою команди \diameter з пакету wasysym.[5]

В планшеті при утримуванні знаку нуля з'являється зображення ∅, торкнувшись якого і відпустиши 0, отримаємо вдрук знаку діаметра.

Важливо також відрізняти символ діаметра   від символу порожньої множини « ». Символ порожньої множини, на відміну від символу діаметра, схожий на Ø (перекреслена велика літера «О»).

Діаметр кривої другого порядку (конічного перетину)

ред.

Діаметр кривої другого порядку (конічного перетину) — пряма лінія, що є геометричним місцем середин усіх паралельних хорд даного конічного перетину.[2][6] :стор.87.

Для замкненої центральної кривої другого порядку (коло або еліпс) діаметр — хорда, що проходить через центр кривої. Тобто це відрізок вищезгаданої прямої, який лежить всередині кола (еліпса).

Спряжені діаметри для кривої другого порядку — пара діаметрів, що задовольняють умові: середини хорд паралельних першому діаметру, лежать на другому діаметрі.

Діаметр еліпса

ред.
 
Спряжені діаметри еліпса (AB і CD).

Діаметром еліпса називають довільну хорду, що проходить через його центр.[7][6] :стор.88-89

Також можливе визначення діаметра еліпса (кола) — відрізок, що сполучає дві точки цього еліпса і проходить через його центр.

Діаметр, що відповідає хордам, паралельним малій осі еліпса, є його велика вісь, а діаметр, що відповідає хордам, паралельним великій осі, є мала вісь еліпса

Для еліпса   кутовий коефіціент   паралельних хорд ( ) та кутовий коефіцієнт   відповідного діаметра   пов'язані співвідношенням:

 

де   — ексцентриситет еліпса.

Спряженими діаметрами еліпса називають пару його діаметрів, що мають наступну властивість: середини хорд, паралельних першому діаметру, лежать на другому діаметрі. Тобто, діаметр еліпса ділить навпіл хорди, що паралельні до спряженого діаметра.

Два діаметри, спряжені один з одним і водночас взаємно перпендикулярні, називаються головними діаметрами. Вони є малою та великою осями еліпса та співпадають з його осями симетрії.

У кола кожен діаметр — головний. У еліпса, відмінного від кола, є лише одна пара головних діаметрів — велика і мала осі.

При обертанні діаметра його спряжений діаметр обертається у той самий бік.

Якщо еліпс є образом кола при афінному перетворенні, його спряжені діаметри є образами двох перпендикулярних діаметрів цього кола.

Діаметр гіперболи

ред.
 
Гіпербола та два її спряжених діаметри, що проходять через середини паралельних хорд

Діаметром гіперболи називають пряму, що проходить через середини паралельних хорд гіперболи.[6] :стор.87

Всі діаметри гіперболи проходять через її центр.[6] :стор.89-91.

Діаметр, що відповідає хордам, паралельним уявній осі, є дійсна вісь, а діаметр, що відповідає хордам, паралельним дійсній осі, є уявна вісь гіперболи.

Для гіперболи   кутовий коефіціент k паралельних хорд ( ) та кутовий коефіцієнт k1 відповідного діаметра пов'язані співвідношенням:

 

де   — ексцентриситет гіперболи.

Окрім асимптот гіперболи, будь-яка інша пряма, що проходить через центр гіперболи є одним з її діаметрів.

Спряженими діаметрами гіперболи називають пару її діаметрів, що мають наступну властивість: середини хорд, паралельних першому діаметру, лежать на другому діаметрі.

У будь-якої гіперболи є лише одна пара головних (тобто спряжених і водночас взаємно перпендикулярних) діаметрів — це дійсна і уявна осі.

При обертанні діаметра навколо центра гіперболи, його спряжений діаметр обертається в протилежному напрямку. Коли перший необмежено наближається до однієї з асимптот, другий (спряжений) наближається до тієї ж асимптоти з іншого напрямку.

Діаметр параболи

ред.
 
Парабола та її діаметр

Діаметром параболи називають геометричне місце середин паралельних хорд параболи.[6] :стор.92.

Всі діаметри параболи паралельні до її осі. Діаметр, що відповідає хордам, перпендикулярним до осі параболи, збігається з самою віссю.

Діаметр параболи  , що відповідає хордам з кутовим коефіцієнтом  , задається рівнянням:

 

Варіації та узагальнення

ред.

Поняття діаметра допускає природні узагальнення на деякі інші геометричні та математичні об'єкти. Якщо у множині об'єктів визначено метрику простору, то для підмножини цих об'єктів можна ввести поняття діаметра множини.

Діаметром множини  , що лежить у метричному просторі з метрикою  , називають величину  .

Під діаметром метричного простору розуміють точну верхню грань відстаней між парою будь-яких його точок.

  • Найбільша відстань Геммінга між двома словами рівної в символах довжини   дорівнює  , тобто, діаметр множини слів у метриці Геммінга дорівнює  .

Діаметр множини точок

ред.

Діаметр множини точок — віддаль між двома найбільш віддаленими точками цієї множини.[1]:стор.609

Нерівність між діаметром і радіусом множини точок у будь-якому евклідовому просторі описує теорема Юнга.

Діаметр пласкої фігури

ред.
 
Пласка фігура довільної форми та її діаметр

Діаметр пласкої фігури[8]:стор.5 — найбільша відстань між двома точками цієї фігури. Тобто, діаметр   фігури — це така відстань  , що:

  1. відстань між будь-якими двома точками   і   фігури   не є більшою, ніж  ;
  2. в фігурі   знайдеться щонайменше одна пара точок   і  , відстань між якими точно дорівнює  .

Діаметр геометричної фігури — найбільша відстань між точками цієї фігури.

Наприклад, діаметр багатокутника є найбільша відстань між його вершинами. Діаметр трикутника дорівнює найбільшій з його сторін.[8]:стор.6

Діаметр опуклої пласкої фігури можна визначити як найбільшу відстань між двома протилежними паралельними опорними прямими фігури.

Опорна пряма до фігури   — це така пряма, що вся фігура лежить по одну сторону від неї, і ця пряма має спільні точки з границею фігури[9] :стор.16.

Ширина опуклої пласкої фігури визначається як найменша така відстань.

Для кривої сталої ширини, такої як трикутник Рело, ширина та діаметр однакові, оскільки для неї відстані між всіми такими парами паралельних дотичних прямих однакові.

Діаметр графа

ред.

Діаметр графа — це найбільша відстань між парами його вершин. Відстань між вершинами визначається як найменша кількість ребер, які необхідно пройти, щоб дістатися з однієї вершини до іншої. Тобто, це виміряна кількістю ребер відстань між двома вершинами графа, найбільше віддаленими одна від одної.

Діаметр зв'язного графу — відстань між двома найвіддаленішими вершинами. Відстань між вершинами А і В— довжина найкоротшого шляху, що сполучає їх.

  • Діаметр n-вимірного гіперкуба з ребром   дорівнює
 .

Див. також

ред.

Примітки

ред.
  1. а б М. Бажан (голов. ред.); І. К. Білодід, І. О. Гуржій, О. З. Жмудський, Р. Є. Кавецький та ін. Український Радянський Енциклопедичний Словник. — у 3-х т., Київ : Академія наук Української РСР, 1966. — Т. 1 А - Кабарга. — С. 609.
  2. а б За ред. О.С. Мельничука (1975). Словник іншомовних слів (укр.) . Київ.: Гол. ред. Української радянської енциклопедії академії наук Української РСР. с. 220.
  3. [1]
  4. ГОСТ 2.304—81 — Викитека. ru.wikisource.org (рос.). Процитовано 21 серпня 2023.
  5. wasysym – LaTeX support for the wasy fonts. Comprehensive TeX Archive Network. Процитовано 11 березня 2022.
  6. а б в г д Выгодский М.Я. Справочник по высшей математике. — москва : "наука", 1977. — С. 949.
  7. Bogomolny, Alexander. Conjugate Diameters in Ellipse. www.cut-the-knot.org.
  8. а б Болтянский, В.Г.; Гохберг, И.Ц. (1965), Теоремы и задачи комбинаторной геометрии. (ru) , «Наука»: Главная редакция физико-математической литературы, с. 108 стр с илл.: стор.5
  9. Люстерник Л.А (1956), Выпуклые фигуры и многогранники. (ru) , «Наука»: Главная редакция физико-математической литературы, с. 212 стр с илл.: стор.16