Вільна абелева група
Вільна абелева група — абелева група, кожен елемент якої може бути однозначно представлений у вигляді лінійної комбінації елементів деякої множини з цілочисловими коефіцієнтами. Як і у випадку з векторними просторами, дану множину називають базисом.
Вільні абелеві групи не є вільними групами, за винятком циклічної групи і тривіальної групи, що складається з одного елемента.
Властивості
ред.- Будь-які два базиси вільних абелевих груп є рівнопотужними. Потужність базису вільної абелевої групи називається рангом абелевої групи.
- Для довільного кардинального числа існує вільна абелева група рангу .
- Нехай — вільна абелева група і — абелева група. Якщо існує епіморфізм , то існує підгрупа групи ізоморфна групі така, що .
- Будь-яка абелева група гомоморфним образом вільної абелевої групи. Крім того, якщо група має множину генераторів потужності то вона є гомоморфним образом вільної абелевої групи рангу . Як наслідок будь-яка абелева група ізоморфна факторгрупі вільної абелевої групи.
- Підгрупа вільної абелевої групи теж є вільною абелевою групою.
Скінченнопороджені вільні абелеві групи
ред.У випадку скінченнопородженої вільної абелевої групи (ранг якої є деяким натуральним числом) можна дати повнішу характеристику підгруп. Нехай — вільна абелева група зі скінченним рангом n. Тоді підгрупа цієї групи є вільною абелевою групою рангу і можна вибрати такий базис групи і натуральні числа що
- Множина є базисом підгрупи
- ділиться на для всіх
Доведення
ред.Якщо є групою рангу 1, тобто нескінченною циклічною групою, то твердження одержується із характеристики підгруп циклічних груп. За індукцією припустимо, що твердження доведено для всіх вільних абелевих груп рангу менше n і є вільною абелевою групою рангу n. Для кожного базису і елемента у єдиний спосіб можна записати де всі є цілими числами.
Нехай тепер є підгрупою групи і є мінімальним додатним цілим числом серед тих, що є коефіцієнтами у записі будь-якого елемента через будь-який базис групи . Якщо перепозначити елементи і індекси базису можна записати:
Також
- для
Якщо позначити то є базисом групи і
Згідно вибору числа тоді всі і
Нехай тепер позначає циклічну групу породжену елементом і є підгрупою елементи якої записуються як комбінації елементів базису. Тоді
Оскільки є базисом групи , то довільний елемент є рівним
Елемент
Якщо для то елемент записується через базис як
і тому і відповідно а тому Відповідно кожен елемент є рівним сумі , де і
Група — підгрупа породжена елементами базису є вільною групою рангу n - 1 і є підгрупою у . Згідно припущення індукції є вільною групою деякого рангу s - 1 і існує базис групи і числа що є базисом групи і ділиться на для всіх Тоді є базисом групи , а є базисом групи Також ділить . Справді, якщо , для то у базисі елемент записується як Із мінімальності випливає, що і
Відповідно базис групи і числа (для яких є базисом) задовільняють умови твердження.
Приклади
ред.- Група цілих чисел з додаванням. Базисом цієї групи може бути одна з множин .
- Адитивна група кільця многочленів з цілими коефіцієнтами. Базисом цієї групи є, наприклад множина .
Джерела
ред.- Курош А. Г. Теория групп. — 3-е изд. — Москва : Наука, 1967. — 648 с. — ISBN 5-8114-0616-9.(рос.)
- Джозеф Ротман[en]. An Introduction to the Theory of Groups. — 4th. — Springer (Graduate Texts in Mathematics), 1994. — 532 с. — ISBN 978-0387942858.(англ.)
- Phillip A. Griffith (1970). Infinite Abelian group theory. Chicago Lectures in Mathematics. University of Chicago Press. ISBN 0-226-30870-7.