N-кістяк у математиці, зокрема в алгебраїчній топології, є топологічним простором X, який представлений у вигляді симпліційного комплексу (відповідно CW-комплексу), який належить до підпростору Xn, що є об'єднанням симплексів X (відповідно клітин X) розмірів mn. Іншими словами, враховуючи індуктивне визначення комплексу, n-кістяк отримується, зупинкою на n-му кроці.

Граф гіперкуба є 1-кістяком тесеракту.

Ці підпростори збільшуються зі значенням n. 0-кістяк являє собою дискретний простір, а також 1-кістяк топологічного графа. Скелети простору використовуються в теорії обструкцій[en], для побудови спектральних послідовностей[en] за допомогою фільтрації, і взагалі для створення індуктивних аргументів. Вони особливо важливі, коли X має нескінченну розмірність в тому сенсі, Xn не стає постійним, коли .

В геометрії ред.

В геометрії, a k-кістяк n-багатогранника P (функціонально представлені у вигляді skelk(P)) складаються з усіх i-політопів, які мають розмірність не більше k.[1]

Наприклад:

skel0(куб) = 8 вершин: skel1(куб) = 8 вершин, 12 ребер: skel2(куб) = 8 вершин, 12 ребер, 6 квадратних граней

Для симпліційних множин ред.

Вищезгадане визначення кістяка симпліційного комплексу — це окремий випадок поняття кістяка симпліційної множини. Коротко кажучи, спрощений набір   може бути описаний сукупністю множин  , разом з гранями і виродження між ними задовольняють ряд рівнянь. Ідея n-кістяку   — це спочатку відкинути набори   із  , а потім доповнити колекцію   із   до «найменшої можливої» симпліційної множини, так що отримана симпліційна множина не містить ніяких вироджених симплексів степені  .

Більш точно, обмеження функтора

 

має лівого спряженого, який позначається як  .[2] (Нотації   є порівнянними з функторами зображень для пучків[en].) n-кістяк симпліційної множини   визначається як

 

Кокістяк ред.

Крім того,   має правий спряжений  . n-кокістяк визначається як

 

Наприклад, 0-skeleton K являє собою постійний симпліційну множину, визначену як  . 0-кокістяк визначається нервом[en] Чеха

 

(Граничний та вироджений морфізми задаються різними проєкціями та діагональними вкладеннями, відповідно.)

Наведені вище конструкції працюють для більш загальних категорій (замість множин), за умови, що у категорії є розшарований добуток. Кокістяк необхідний для визначення поняття гіперпокриття[en] в гомотопичній алгебрі[en] і алгебраїчній геометрії.[3]

Див. також ред.

Примітки ред.

  1. Peter McMullen, Egon Schulte, Abstract Regular Polytopes, Cambridge University Press, 2002. ISBN 0-521-81496-0 (Page 29)
  2. Goerss, P. G.; Jardine, J. F. (1999), Simplicial Homotopy Theory, Progress in Mathematics, т. 174, Basel, Boston, Berlin: Birkhäuser, ISBN 978-3-7643-6064-1, section IV.3.2
  3. Artin, Michael; Mazur, Barry (1969), Etale homotopy, Lecture Notes in Mathematics, No. 100, Berlin, New York: Springer-Verlag

Посилання ред.