В алгебраїчній топології n- вимірним числом Бетті простору X є ранг n-вимірної гомологічної групи з цілими коефіцієнтами. Еквівалентно числа Бетті рівні розмірності гомологічної групи з раціональними коефіцієнтами. Для кожного n числа Бетті — топологічні інваріанти поліедра, що реалізовує комплекс K, що вказує число попарно негомологічних (над раціональними числами) циклів в ньому.

Термін «числа Бетті» було введено Анрі Пуанкаре, який назвав їх на честь італійського математика Енріко Бетті.

ПрикладиРедагувати

  • Для сфери  
 
  • Для проективної площини  
 
  • Для тора  
 

Приклад: перше число Бетті в теорії графівРедагувати

В топологічній теорії графів перше число Бетті графа G з n вершинами, m ребрами та k компонентами зв'язності дорівнює

 

Це можна безпосередньо довести із використанням математичної індукції за кількістю ребер. Нове ребро або збільшує кількість 1-циклів, або зменшує кількість компонент зв'язності.

Дивись цикломатичну складність як приклад застосування першого числа Бетті в розробці програмного забезпечення.

ВластивостіРедагувати

 

ЛітератураРедагувати

  • Александров П. С, Введение в гомологическую теорию размерности и общую комбинаторную топологию, М., 1975.