Відкрити головне меню

Характеристичний поліном квадратної матриці розміру — це многочлен степеня від змінної який дорівнює

, де одинична матриця порядку .

Зміст

МотиваціяРедагувати

Скаляр   є власним значенням матриці A для власного вектора   тоді і тільки тоді коли:

 

чи

 

Оскільки   то   повинна бути виродженою, а отже:

 .

ВластивостіРедагувати

  • Неважко переконатися, що
 
  • Для матриць елементи яких комутативними є  -алгебрами, характеристичний многочлен можна записати як:
     
    де  — многочлени із раціональними коефіцієнтами, що описують залежність елементарних симетричних многочленів від степеневих симетричних многочленів у тотожностях Ньютона (тобто  )
  • Характеристичні поліноми подібних матриць збігаються:
 
  • Характеристичні поліноми добутку квадратних матриць не залежать від порядку множників:
 
 

Характеристичне рівнянняРедагувати

Характеристичним рівнянням (або секулярним рівнянням) називається рівняння

 

Корені характеристичного полінома називаються характеристичними числами матриці  

Тільки вони є власними значеннями матриці  

Див. такожРедагувати

ДжерелаРедагувати