Полярний розклад матриці
Квадратна матриця з комплексними елементами може бути представлена як добуток унітарної матриці та невід'ємної ермітової матриці:
де
- — невід'ємноозначені матриці,
- — унітарна матриця.
Матриця буде нормальною тоді і тільки тоді, коли будуть переставними (що рівнозначно до ).
Для доведення використаємо сингулярний розклад матриці:
Знаходження модуля
ред.Оскільки:
матриці однозначно визначаються як:
Якщо матриця — нормальна, то за визначенням.
Знаходження повороту
ред.Використавши отримаємо
Використавши знову ж отримаємо
Полярний розклад нормальної матриці
ред.Якщо матриця — нормальна, тоді матриці — є переставними та нормальними, отже одночасно діагоналізуємими:
де
- — унітарна матриця,
- — невід'ємноозначена діагональна матриця,
- — унітарна діагональна матриця.
Тоді
Джерела
ред.- Гантмахер Ф. Р. Теорія матриць. — 2025. — 757 с.(укр.)
- Гельфанд І. М. Лекції з лінійної алгебри. — 2025. — 248 с.(укр.)