Вектор (ненульовий) v розмірності N є власним вектором квадратної (N×N) матриці Aтоді і тільки тоді, коли він задовольняє лінійному рівнянню
де λ це скаляр, термін власне значення стосується v. Тобто, власні вектори це такі вектори, які лінійне перетворення A лише розтягує або скорочує і коефіцієнт розтягування/скорочення і є власним значенням.
Звідси походить рівняння для власних значень
Ми звемо p(λ) характеристичним многочленом, а рівняння називають характеристичним рівнянням, воно являє собою многочленом порядку N з невідомою λ. Це рівняння матиме Nλ відмінних розв'язків, де 1 ≤ Nλ ≤ N . Множину розв'язків, тобто власних значень, іноді звуть спектромA.
Ціле ni називається алгебричною кратністю власного значення λi. Сума всіх алгебраїчним кратностей дорівнює N:
Для кожного власного значення, λi, ми маємо особливе рівняння
Всього буде 1 ≤ mi ≤ niлінійно незалежних розв'зяків для кожного власного значення. mi розв'язків будуть власними векторами пов'язаними з власним значенням λi. Ціле mi називають геометричною кратністю λi. Важливо пам'ятати, що алгебраїчне ni і геометричне mi кратні можуть бути однаковими і різними, але завжди mi ≤ ni. Найпростіший випадок це коли mi = ni = 1. Загальна кількість лінійно незалежних власних векторів, Nv, можна дізнатись додавши геометричні кратності
Власні вектори можна проіндексувати по їх власним значенням, тобто із використанням подвійного індексування, з vi,j, де jй власний вектор iго власного значення. Також це можна зробити з одним індексом vk, з k = 1, 2, ..., Nv.
де Q це квадратна (N×N) матриця чиї i-ті стовпчики є власними векторами A і Λ це діагональна матриця чиї діагональні елементи є відповідними власними значеннями, тобто, . Зауважте, що тільки діагоноалізовні матриці можна розкласти таким чином. Наприклад, матрицю, що на має N (2) незалежних власних векторів не можна діагоналізувати.
Зазвичай власні вектори нормалізують, але в цьому немає потреби. Ненормалізований набір власних векторів, також можна використовувати як стовпчики для Q. Це можна зрозуміти, зауваживши, що величина власних векторів у Q зникає в розкладі завдяки присутності Q−1.
Якщо матриця A має власний розклад і якщо жодне з її власних значень не дорівнює нулю, тоді A — несингулярна, тобто моє обернену і обернена задається так
Далі більше, через те, що Λ діагональна, її обернену дуже легко обчислити: