У комплексному аналізі кількох змінних лемою Осґуда називається твердження про еквівалентність кількох означень голоморфної функції кількох змінних. Лема стверджує, що неперервна функція кількох комплексних змінних, що є голоморфною по кожній змінній окремо є голоморфною. Вимога неперервності у твердженні насправді не є необхідною, що є змістом сильнішої теореми Хартогса. Лема названа на честь американського математика Вільяма Фогга Осґуда, який довів її у 1899 році[1].

Твердження

ред.

Якщо комплексна функція   є неперервною у відкритій множині  і голоморфною по кожній змінній окремо, то вона є голоморфною в D.

Доведення

ред.

Виберемо будь-яку точку   і замкнутий полікруг   Оскільки   є голоморфною по кожній змінній окремо, багаторазове застосування інтегральної формули Коші (для функцій однієї змінної) приводить до формули

 

справедливої ​​при всіх  

Для будь-якої фіксованої точки z підінтегральний вираз у цій формулі є неперервною функцією на компактній області інтегрування, тому повторний інтеграл можна замінити одним кратним інтегралом

 

Для фіксованої точки   ряд

 

є абсолютно і рівномірно збіжним для будь-якої точки   з області інтегрування у кратному інтегралі. Отже, після підстановки цього розкладу в інтеграл і зміни порядку сумування і інтегрування одержується розклад функції   у степеневий ряд виду

 

з коефіцієнтами

 

Отже  є голоморфною функцією.

Примітки

ред.
  1. Osgood, William F. (1899), Note über analytische Functionen mehrerer Veränderlichen, Mathematische Annalen, Springer Berlin / Heidelberg, 52: 462—464, doi:10.1007/BF01476172, ISSN 0025-5831

Див. також

ред.

Література

ред.