Тор — геометричне тіло, що утворюється обертанням кола навколо осі, котра лежить у одній площині з колом, але не перетинає його. Форма тора зовні нагадує бублик.

Рис. 1. Тор

Геометрія

ред.
 
Рис.2. Тор та його основні параметри

Рівняння тора не складно отримати, перейшовши від декартових координат з початком в центрі тора (радіус-вектор  ) до кутів   та  , що описують обертання навколо осей тора, як зображено на Рис. 2. В результаті має місце параметричне рівняння:

 
 
 

Тут  , R — відстань від центру кола до осі обертання, r — радіус кола.

Не параметричне рівняння в декартових координатах і з тими ж радіусами має четвертий степінь:

 

Площа поверхні тора A та його об'єм V визначаються за формулами:

 
 

Ці формули точно збігаються з формулами для площі та об'єму циліндра з висотою   та радіусом r, який утворюється при розрізанні тора та випрямленні його вздовж лінії, що проходить через центр труби. Втрати площі та об'єму на внутрішньому боці тора точно компенсуються збільшенням площі та об'єму на зовнішньому боці.

Топологія

ред.

З топологічного погляду тор — це замкнута поверхня, яка визначається як добуток двох кіл: S¹ × S¹.

 
Рис. 3. Тор як добуток двох кіл.

Фундаментальною групою тора є прямий добуток фундаментальних груп кола:

 

Інтуїтивно це означає, що траєкторія, що спочатку обходить «дірку» тора (нехай для сталого кута p), а потім його тіло (нехай для сталого кута t) може бути деформована у траєкторію, що спочатку обходить тіло тора, а потім — дірку. Таким чином, обходи тора «по широті» та «по довготі» комутують.

Тор є поверхнею повноторія (заповненого тора).

n-вимірний тор

ред.

Застосування

ред.

Див. також

ред.

Посилання

ред.