Солітон
Соліто́н — структурно стійка усамітнена (відокремлена) хвиля, що розповсюджується в нелінійному середовищі. Солітони поводяться подібно до частинок (тому їх можна називати частинкоподібними хвилями): при взаємодії один з одним або з деякими іншими збудженнями вони не руйнуються, а рухаються, зберігаючи свою структуру незмінною. Солітони описують нелінійними диференціальними рівняннями в частинних похідних (для неперервних середовищ) або системами нелінійних звичайних диференціальних рівнянь (для дискретних середовищ).
Історія відкриття
ред.Історія вивчення солітона почалася в серпні 1834 року, на березі каналу Юніон поблизу Единбургу. Джон Скотт Расселл спостерігав на поверхні води явище, яке називав «усамітненою (відокремленою) хвилею», — англ. solitary wave[1][2][3].
Вперше слово «солітон» вжили для опису нелінійних хвиль, що взаємодіють як частинки[4]. Солітон трохи не став «солітроном», але йому пощастило — в ті часи існувала фірма з аналогічною назвою, і однією літерою довелося поступитися[5].
Формальне визначення
ред.Найбільш загальноприйнятим вважають визначення, наведене Дразіним та Джонсоном в їхній книжці[6] Згідно з цим визначенням солітоном називають хвильове збудження в нелінійному середовищі, яке задовольняє такі три вимоги:
- воно розповсюджується з постійною швидкістю, не змінюючи при цьому своєї форми;
- воно локалізоване у просторі;
- воно не змінюється після зіткнення з іншим таким же збудженням (окрім можливого зсуву фаз).
У реальних фізичних системах часто використовують слабше визначення, у якому однієї або кількох перелічених умов або не дотримуються взагалі, або дотримуються в межах певного наближення.
Солітони в різних фізичних системах
ред.Солітони експериментально спостерігають в низці фізичних систем:
- На поверхнях рідин солітони утворюються у вигляді локалізованих горбів, що розповсюджуються на далекі відстані. Це перші солітони, виявлені в природі. Іноді солітонами вважають гігантські хвилі, що утворюються на поверхні океанів після землетрусів та вивержень вулканів — цунамі.
- Іонозвукові та магнітозвукові солітони в плазмі.
- Гравітаційні солітони в шаруватій рідині.
- Солітони у вигляді коротких світлових імпульсів в активному середовищі лазера.
- Солітони можуть утворюватися в довгих контактах Джозефсона або в масивах точкових контактів Джозефсона. Вони мають фізичний зміст кванту магнітного потоку і називаються джозефсонівськими вихорами або флуксонами. Солітони в джозефсонівських контактах описуються рівнянням синус-Гордона.
- У магнетиках можуть утворюватися солітони різного типу, зокрема доменні стінки мають властивості солітонів.
- В оптичних хвилеводах, в яких присутня нелінійна залежність показника заломлення від електричного поля (завдяки так званому ефекту Керра) утворюються оптичні солітони.
- У бозе — ейнштейнівських конденсатах холодних атомних газів спостерігалися солітони, що мають фізичний зміст рухливих областей підвищеної густини атомів.
- Існує багато систем, в яких можуть існувати солітони або збудження, близькі до них за своїми властивостями. Імовірно, прикладом солітона є велетенський гексагон на Сатурні[джерело?].
- У певному наближенні можна розглядати як солітони нервові імпульси[джерело?].
Математичні основи теорії солітонів
ред.Існує декілька математичних моделей, для яких солітони є точним розв'язком: рівняння Кортевега — де Фріза, нелінійне рівняння Шредінгера, рівняння синус-Гордона, рівняння Кадомцева — Петвіашвілі, ізотропне рівняння Ландау-Ліфшиця, ланцюжок Тоди. Основним математичним методом, який дозволяє явно побудувати солітонні розв'язки, є метод оберненої задачі розсіювання. Існують також інші методи: метод Хіроти, перетворення Беклунда та ін.
Рівняння Кортевега — де Фріза
ред.Однією з найпростіших і найвідоміших моделей, що припускають існування солітонів у розв'язку, є рівняння Кортевега — де Фріза:
Одним з можливих розв'язків цього рівняння є усамітнена хвиля, названа солітоном:
де A — амплітуда солітона, L — ефективна ширина його основи. Такий солітон рухається зі швидкістю .
1965 року Забуський і Краскал виявили, що цей розв'язок являє собою усамітнену хвилю, та має властивість, яка не була відома раніше, а саме: вона «пружно» взаємодіє з іншою такою хвилею[4]. Вони назвали такі хвилі солітонами.
Видно, що солітони з великою амплітудою виявляються вужчими й рухаються швидше, і взаємодія двох окремих солітонів подібна до зіткнення частинок. Солітон-1 з більшою енергією наздоганяє повільніший солітон-2, але не переганяє його — між ними відбувається складна нелінійна взаємодія, в результаті якої швидший солітон-1 «передає» свою енергію повільнішому солітону-2. Відтак солітон-2 починає рухатися швидше, а солітон-1 уповільнюється до початкової швидкості солітона-2. Хвилі-солітони таким чином відтворюють картину взаємодії двох частинок чи куль, одна з яких наздоганяє повільнішу і пружно передає їй свою енергію під час зіткнення.
Кубічне нелінійне рівняння Шредінгера
ред.Для нелінійного рівняння Шредінгера:
при значенні параметра допустимі відокремлені хвилі у вигляді:
де — деякі сталі.
Класифікація
ред.Перші три з вищенаведених рівнянь (Кортевега — де Фріза, синус-Гордона та нелінійне рівняння Шредінгера) є найвідомішими рівняннями теорії солітонів. Розв'язки цих рівнянь утворюють три основних типи солітонів:
- Солітони Кортевега — де Фріза (акустичні солітони).
- Солітони огинаючої.
- Топологічні солітони (кінки та антикінки).
Див. також
ред.Примітки
ред.- ↑ J.S.Russell (1838), Report of the committee on waves, Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, pp.417-496.
- ↑ J.S.Russell «Report on Waves»: (Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311—390, Plates XLVII-LVII).
- ↑ Абловиц М., Сигур Х. Солитоны и метод обратной задачи. — М. : Мир, 1987. — С. 12.
- ↑ а б N.J.Zabusky and M.D.Kruskal (1965), Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys.Rev.Lett., 15 pp. 240—243.[недоступне посилання]
- ↑ Филиппов А. Т. Многоликий солитон. 2-е изд, перераб. и доп. (выпуск 48 серии «Библиотечка квант»). — М., Наука, 1990. — 288 с. ISBN 5-02-014405-3. Архів оригіналу за 7 грудня 2007. Процитовано 8 січня 2008.
- ↑
P. G. Drazin and R. S. Johnson (1989). Solitons: an introduction (англійська) . Cambridge: Cambridge University Press.
{{cite book}}
: Cite має пусті невідомі параметри:|пубрік=
,|посилання=
,|авторлінк=
,|пубдата=
,|главалінк=
та|глава=
(довідка).
Джерела
ред.- Абловиц М., Сигур Х. Солитоны и метод обратной задачи. — М. : Мир, 1987. — 480 с.
- Буллаф Р., Кодри Ф. Солитоны. — М. : Мир, 1983. — 408 с.
- Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. — М. : Мир, 1988. — 696 с.
- Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов. Метод обратной задачи. — М. : Наука, 1980. — 320 с.
- Инфельд Э., Роуландс Дж. Нелинейные волны, солитоны и хаос. — М. : Физматлит, 2006. — 480 с.
- Лонгрен К., Скотт Э. Солитоны в действии. — М. : Мир, 1981. — 312 с.
- Лэм Дж. Л. Введение в теорию солитонов. — М. : Мир, 1983. — 294 с.
- Ньюэлл А. Солитоны в математике и физике. — М. : Мир, 1989. — 328 с.
- Скотт Э. Нелинейная наука: рождение и развитие когерентных структур. — М. : Физматлит, 2007. — 560 с.
- Уизем Дж. Линейные и нелинейные волны. — М. : Мир, 1977. — 624 с.
- Филиппов А. Т. Многоликий солитон // Библиотечка "Квант". — Изд. 2, перераб. и доп. — М. : Наука, 1990. — 288 с.