П'ятикомірник

Діаграма Шлегеля: проєкція (перспектива) п'ятикомірника в тривимірний простір

Тип Правильний чотиривимірний політоп
Символ Шлефлі {3,3,3}
Комірок 5
Граней 10
Ребер 10
Вершин 5
Вершинна фігура Правильний тетраедр
Двоїстий політоп Він же (самодвоїстий)

П'ятикомірник[1], або пентахор[2] (від дав.-гр. πέντε — «п'ять» і χώρος — «місце, простір»), — один з правильних багатокомірників у чотиривимірному просторі: правильний чотиривимірний симплекс.

Проєкція п'ятикомірника в тривимірний простір
Стереографічна проєкція п'ятикомірника

Відкритий Людвігом Шлефлі в середині 1850-х років[3]. Символ Шлефлі п'ятикомірника — {3,3,3}.

Є двоїстим сам собі. На відміну від п'яти інших правильних багатокомірників, не має центральної симетрії.

Використовується у фізико-хімічному аналізі для вивчення властивостей багатокомпонентних систем[4].

Опис

ред.

Обмежений 5 тривимірними комірками — однаковими правильними тетраедрами. Будь-які дві комірки — суміжні; кут між ними дорівнює  

Його 10 двовимірних граней — однакові правильні трикутники. Кожна грань розділяє 2 прилеглі до неї комірки.

Має 10 ребер рівної довжини. На кожному ребрі сходяться по 3 грані й по 3 комірки.

Має 5 вершин. У кожній вершині сходяться по 4 ребра, по 6 граней і по 4 комірки. Будь-які 2 вершини з'єднані ребром; будь-які 3 вершини належать одній грані; будь-які 4 вершини належать одній комірці.

П'ятикомірник можна розглядати як правильну чотиривимірну піраміду з тетраедричною основою.

У координатах

ред.

Перший спосіб розташування

ред.

П'ятикомірник можна розмістити в декартовій системі координат так, щоб його вершини мали координати          

При цьому точка   буде центром вписаної, описаної і піввписаної тривимірних гіперсфер.

Другий спосіб розташування

ред.

У п'ятивимірному просторі можливо розмістити п'ятикомірник так, щоб усі його вершини мали цілі координати:          

Центром вписаної, описаної і напіввписаної гіперсфер при цьому буде точка  .

Ортогональні проєкції на площину

ред.

Метричні характеристики

ред.

Якщо п'ятикомірник має ребро довжини   то його чотиривимірний гіпероб'єм і тривимірна гіперплоща поверхні виражаються відповідно як

 
 

Радіус описаної тривимірної гіперсфери (що проходить через усі вершини багатокомірника) при цьому буде дорівнює

 

радіус зовнішньої напіввписаної гіперсфери (дотикається до всіх ребер у їхніх серединах) —

 

радіус внутрішньої напіввписаної гіперсфери (дотикається до всіх граней у їхніх центрах) —

 

радіус вписаної гіперсфери (дотикається до всіх комірок у їхніх центрах) —

 

Неправильні п'ятикомірники

ред.

Іноді словом «п'ятикомірник» може позначатися не тільки правильний, але й довільний чотиривимірний симплекс.

Примітки

ред.
  1. Благодаренко Л. Ю.; Ротозей А. О. Висвітлення проблеми квантової гравітації в курсі фізики педагогічних університетів (PDF) (укр.) . НПУ імені М. П. Драгоманова. с. 6. Процитовано 29 січня 2021.
  2. Андрашко, Юрій. Інформаційна технологія оцінювання результатів наукової діяльності на основі проєктно-векторних моделей (PDF) (укр.) . Київський національний університет будівництва і архітектури. с. 8. Процитовано 29 січня 2021.
  3. George Olshevsky. Архів оригіналу за 7 лютого 2007. Процитовано 7 лютого 2007.
  4. Александр Семёнов. Многогранный пентатоп : [рос.] // Наука и жизнь. — 2018. — № 5. — С. 66—74.

Посилання

ред.
  • Weisstein, Eric W. П'ятикомірник(англ.) на сайті Wolfram MathWorld.