Зрізаний тетраедр

многогранник
Truncatedtetrahedron.gif

Зрі́заний тетра́едр — напівправильний многогранник, відноситься до архімедових тіл, що складається із 4 правильних шестикутників і 4 правильних трикутників. В кожній із 12 вершин сходяться дві шестикутні грані і один правильний трикутник. Кількість двотипних ребер налічує 18 штук. Двоїстий до зрізаного тетраедра многогранник — триакістетраедр.

Тривимірна модель зрізаного тетраедра

Отримати даний многогранник можна за рахунок зрізання всіх чотирьох вершин правильного тетраедра на третину від первісної довжини ребра.

Ортогональні проєкції
Tetrahedron t01 ae.png Tetrahedron t01 af36.png 3-simplex t01.svg 3-simplex t01 A2.svg


ФормулиРедагувати

Знаючи довжину ребра зрізаного тетраедра — a - отримуємо:

Математичний опис
Об'єм  
Площа поверхні  

Графічне зображенняРедагувати

Якщо шестикутну грань зрізаного тетраедра розділити на трикутники із заданою довжиною ребра то дані трикутники будуть ідентичні правильним трикутникам самого зрізаного тетраедра.

 

 
Розгортка зрізаного тетраедра

Сферична плиткаРедагувати

Зрізаний тетраедр можна подати у вигляді сферичної плитки, і спроєктувати на площину у вигляді стереографічної проєкції. Ця проєкція буде конформною, зберігаючи кути, але не площини чи ребра многогранника. Прямі лінії на сфері проєктуватимуться як дуги на площині.

   
центровано трикутником
 
центровано шестикутником
Сферична плитка Стереографічна проєкція (лицева)

ДжерелаРедагувати

  • Weisstein, Eric W. Cuboctahedron(англ.) на сайті Wolfram MathWorld.
  • Пчелінцев В. О. Кристалографія, кристалохімія та мінералогія. Навчальний посібник для студентів вищих навчальних закладів. Суми: Вид-во СумДУ, 2008, — 232с.
  • Гордєєва Є. П., Величко В. Л. Нарисна геометрія. Багатогранники (правильні, напівправильні та зірчасті). Частина І. Навчальний посібник. Луцьк: Редакційно-видавничий відділ ЛДТУ, 2007, — 198с.
  • П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. Многоугольники и многогранники. Энциклопедия элементарной математики. Москва: Государственное издательство физико-математической литературы, 1963, — 568с.