Абсолютно неперервна випадкова величина
Означення
ред.Випадкова величина ξ називається абсолютно неперервною, якщо її функція розподілу допускає представлення , де — невід'ємна інтегровна за Лебегом функція. Функція називається функцією густини імовірності випадкової величини ξ.
Способи задання
ред.Нехай ξ — абсолютно неперервна випадкова величина, тоді є два способа її задання:
- за допомогою функції густини імовірності ;
- за допомогою функції розподілу ймовірностей .
Приклад задачі, що призводить до даного поняття
ред.Розглянемо стохастичний експеримент, який полягає в тому, що ми обираємо випадковим чином число з інтервалу [0, 1]. Сенс фрази «випадковим чином» полягає у рівноймовірності обрання нами чисел з довільних двох однакових неперерізних інтервалів, які є підмножинами [0, 1] (наприклад, ймовірність того, що наш вибір буде числом, меншим ніж 0,5 дорівнює 0,5 і т. д.). Розглянемо відповідну випадкову величину ξ, реалізація якої є результатом цього стохастичного експерименту. Тоді ймовірність того, що ця випадкова величина набуде значення менше нуля дорівнює 0, а ймовірність того, що ця випадкова величина набуде значення, що перевищує одиницю дорівнює 1. А на інтервалі [0, 1] функція розподілу, очевидно, зростатиме лінійно. Отже, отримаємо такі результати:
Приклади розподілів абсолютно неперервних випадкових величин
ред.Див. також
ред.Джерела
ред.- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнеденко Б. В. Курс теории вероятностей. — 6-е изд. — Москва : Наука, 1988. — 446 с.(рос.)
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)