Теорія множин Цермело
Теорія множин Цермело — теорія множин, що включає в себе 7 аксіом, опублікована німецьким математиком Ернстом Цермело у 1908 році. Система аксіом Цермело (Z) для теорії множин була створена тому, що в інтуїтивній теорії множин Георга Кантора були виявлені парадокси і аксіоматичний метод виявилася єдиним виходом із становища.
Пізніше Абрахам Френкель і Туралф Скулем розширили її до 10 аксіом (Теорія множин Цермело — Френкеля ZF).
Аксіоми Теорії множин Z
ред.- AXIOM I. Аксіома об'ємності (екстенсіональності). Дві множини збігаються (рівні між собою) тоді й лише тоді, коли вони мають одні й ті самі елементи:
Замість поданого твердження інколи записують, що елементи вважають однаковими, якщо вони належать до одних і тих самих множин. Інакше кажучи, їх неможливо розрізнити за допомогою належності до множин:
- AXIOM II. Аксіома пари: Із двох довільних [однакових чи різних] множин можна утворити [щонайменше одну] невпорядковану пару, тобто таку множину , кожний елемент якої ідентичний даній множині або даній множині :
- AXIOM III. Аксіомна схема виділення. Для довільної множини і властивості (предиката, висловлювання системи ) існує множина , елементами якої є ті й лише ті елементи множини , які мають властивість (при яких справджується Р):
Тут не входить у запис .
- AXIOM IV. Аксіома булеана. Для довільної множини існує множина , елементами якої є ті й лише ті елементи, що є підмножинами .
З використанням відношення підмножини останню формулу можна спростити:
Таку множину називають булеаном множини та позначають або .
Для скінченних множин справджується рівність . Тут — кількість елементів множини .
- AXIOM V. Аксіома об'єднання. З будь-якого сімейства множин можна утворити як мінімум одну таку множину , кожен елемент якої належить хоча б одній множині даного сімейства :
- AXIOM VI. Аксіома вибору. Для довільної множини існує функція , що вибирає з кожного непорожнього елемента множини єдиний елемент :
- AXIOM VII. Аксіома нескінченності. Існує така множина , що містить порожню множину та для довільного належного до неї елемента y включає також і множину, утворену об’єднанням та :
За допомогою раніше означеного предикату цю аксіому можна записати так:
Теорія множин ZF
ред.Абрахам Френкель і Туралф Скулем незалежно довели у 1922, що в теорії множин Z неможливо довести існування {Z0, Z1, Z2, ...}, де Z0 — натуральні числа, а Zn+1 — булеан Zn. Френкель запропонував доповнити Z новою аксіомою підстановки, а також акіомою регулярності.
Отриману систему називають системою аксіом Цермело — Френкеля і позначають ZF. Ця система аксіом містить єдине примітивне онтологічне (фундаментальне) поняття — множина, та єдине онтологічне припущення, що всі досліджувані об'єкти є множинами. Запроваджено єдине бінарне відношення приналежності до множини.
Див. також
ред.Джерела
ред.- Хаусдорф Ф. Теория множеств. — Москва ; Ленинград : ОНТИ , 1937. — 304 с. — ISBN 978-5-382-00127-2.(рос.)
- Куратовский К., Мостовский А. Теория множеств = Set Theory (Teoria mnogości). — М. : Мир, 1970. — 416 с.(рос.)