Відкрити головне меню
Точка має три декартових і три сферичних координати

Сферичними координатами називають систему координат для відображення геометричних властивостей фігури в трьох вимірах за допомогою задання трьох координат , де — відстань до початку координат, а і — зенітний і азимутальний кути відповідно.

Зміст

Поняття зеніту і азимутуРедагувати

Поняття зеніт і азимут широко використовуються в астрономії. Взагалі зеніт — це напрямок вертикального підйому над довільно вибраним пунктом (точкою спостереження), що належить так званої фундаментальної площини. Як фундаментальна площина в астрономії може бути обрана площина, в якій лежить екватор, або площина, в якій лежить горизонт, або площина екліптики тощо, що породжує різні системи небесних координат. Азимут — кут між довільно вибраним променем фундаментальної площини з початком в точці спостереження та іншим променем цій площині, які мають загальний початок з першим.

На наведеному малюнку сферичної системи координат, фундаментальна площина — це площина xy. Зеніт — якась віддалена точка, що лежить на осі Z і видима з початку координат. Азимут відраховується від осі X до проекції радіус-вектора r на площину xy. Це пояснює назви кутів, як і те, що сферична система координат може служити узагальненням (нехай хоча б і наближеним) безлічі різновидів систем небесних координат.

ВизначенняРедагувати

Три координати   визначені як:

  •   — відстань від початку координат до заданої точки  .
  •   — кут між віссю   і відрізком, що з'єднує початок системи координат і точку  .
  •   — кут між віссю   і проекцією відрізку, що з'єднує початок координат з точкою  , на площині  .

Кут   називається зенітний, або полярний, або нормальний, англ. colatitude, а кут   — азимутальний. Кути   і   не мають значення при  , а   не має значення при   (тобто при   або  ).

Залежно чи незалежно від стандарту (ISO 31-11), існує і така угода щодо позначень, коли замість зенітного кута  , використовується кут між проекцією радіус-вектора точки r на площину xy і самим радіус-вектором r, що дорівнює   —  . Він називається кутом підйому і може бути позначений тією ж буквою  . В цьому випадку він буде змінюватись в межах  .

Тоді кути   і   не мають значення при  , так само як і в першому випадку, а   не має значення при  , так само як і в попередньому випадку, (але вже при   або  ).

Перехід до інших систем координатРедагувати

  • Декартова система координат
    • Від сферичних до декартових:
       
    • Від декартових до сферичних:
       
      • (тут, звісно, потрібне уточнення для значень   поза першим квадрантом; те ж саме для всіх формул з арктангенсом тут і нижче; однак, заміна на відповідну формулу з арккосинусом знімає це питання по відношення до координати  ).
    • Модуль якобіана перетворення від сферичних до декартових координат:
       
  • Циліндрична система координат
    • Від сферичних до циліндричних:
       
    • Від циліндричних до сферичних:
       
    • Модуль якобіану перетворення від сферичних до циліндричних координат:
       

Диференціальні характеристикиРедагувати

Сферичні координати є ортогональними, тому метричний тензор набуває діагональної форми:

 
  •  
  • Квадрат диференціала довжини дуги:
 
 
 
 
 

Інші дорівнюють нулю.

Див. такожРедагувати

ПосиланняРедагувати