Нерівність Бішопа — Громова

теорема порівняння в рімановій геометрії

Нерівність Бішопа — Громова — теорема порівняння в рімановій геометрії. Є ключовим твердженням у доведенні теореми Громова про компактність[1].

Нерівність названа на честь Річарда Бішопа[en] та Михайла Громова.

ФормулюванняРедагувати

Нехай   — повний n-вимірний ріманів многовид з обмеженою знизу кривиною Річчі, тобто

 

для сталої  .

Позначимо через   кулю радіуса r навколо точки p, визначену відносно ріманової функції відстані.

Нехай   позначає n-вимірний модельний простір. Тобто   — повний n-вимірний однозв'язний простір сталої секційної кривини  . Таким чином,

Тоді для будь-яких   і   функція

 

не зростає в інтервалі  .

ЗауваженняРедагувати

  • При   нерівність можна записати так
     
при   .
  • Якщо r прямує до нуля, то співвідношення наближається до одиниці, отже разом із монотонністю це означає, що
     
Цю версію вперше довів Бішоп[2][3].

Див. такожРедагувати

ПриміткиРедагувати

  1. Бураго Ю. Д., Залгаллер В. А., Введение в риманову геометрию 1991, с. 320, (22.5)
  2. Bishop, R. A relation between volume, mean curvature, and diameter. Amer. Math. Soc. Not. 10 (1963), p. 364.
  3. Bishop R.L., Crittenden R.J. Geometry of manifolds, Corollary 4, p. 256