Схема ЯМР спектрометра.png

ЯМР-спектроскопі́я (Ядерна магнітно-резонансна спектроскопія; англ. Nuclear magnetic resonance spectroscopy) — метод ідентифікації та вивчення речовин, що базується на ядерному магнітному резонансі (ЯМР). Найчастіше застосовується для органічних сполук. На сьогодні ЯМР-спектроскопія дозволяє ідентифікувати сполуку маючи менше 1 мг речовини. Зразок розчиняють в непротонному (часто дейтерованому) розчиннику, ампулу (кювету) вміщують в ЯМР-спектрометр, після нетривалого (для простих сполук порядку 30 сек) накопичення сигналу отримують спектр, де по положенню (частоті поля збудження), інтенсивності та мультиплетності піків окремих ядер характеризують сполуку. Широкому використанню заважає тільки висока ціна пристроїв (від 1 мільйона гривень та вище). Для методу доступні всі ядра, що мають не нульовий спін, зокрема 1H, 13С, 15N 19F, 31P, 29Si.

Теоретичні основи методуРедагувати

ЯМР активними є ядра з не нульовим ядерним спіном (проявляють магнітні властивості), величина якого залежна від так званого спінового квантового числа - I, яке може набирати значень 0, 1/2, 1, 3/2, 2, 5/2 … Числове значення спінового квантового числа залежить від кількості протонів та нейтронів у ядрі. Так, ізотопи, які мають парне число протонів та нейтронів (12С, 16О) мають нульовий спін; ізотопи з не парним числом протонів і нейтронів (14N, 2H) володіють цілочисельним спіном, а ізотопи які мають парне число протонів і не парне число нейтронів (або навпаки) характеризуються дробовим значенням спінового квантового числа. Ядра зі спіном 1/2 називають дипольними (диполяим), в той час як ядра зі спіном більшим за 1/2 називають квадрупольними (квадруполями).

Узагальнення значень спінового квантового числа в залежності від кількості протонів і нейтронів у ядрі
Кількість протонів Кількість нейтронів Спінове квантове число, I
Парна Парна 0
Не парна Не парна 1, 2, 3 ...
Парна Не парна 1/2, 3/2, 5/2 ...
Не парна Парна 1/2, 3/2, 5/2 ...

При внесенні речовини (яка містить ядра з не нульовим спіном) в зовнішнє магнітне поле, ядерна спіни, які мали хаотичну орієнтацію, починають орієнтуватись вздовж ліній напруженості зовнішнього магнітного поля, подібно дотого як стрілка компаса орієнтується вздовж ліній напруженості магнітного поля Землі. Проте, на відміну від стрілки компаса, ядерний спін є векорною величиною і його напрямок та енергія (значення) є квантованими. Отже, в присутності зовнішнього магнітного поля, ядерні спіни можуть приймати 2I+1 орієнтацій (де I - спінове квантове число). Кожна орієнтація відповідає пеіному енергетичному рівню. Так, на приклад, ядра зі спіном 1/2 при внесенні у зовнішнє магнітне поле будуть приймати дві орієнтації - за полем (α, нижчий енергетичний рівень) і проти поля (β, вищий енергетичний рівень). При чому кількість спінів орієнтованих за полем буде незначно більшою за кількість спінів орієнтованих проти поля. Співвідношення між кількість спінів у різних орієнтаціях визначається розподілом Больцмана: Nα/Nβ = exp(-ΔE/kT), де ΔE - різниця енергії між енергетичними рівнями (Зеєманські енергетичні рівні) різнонаправлених спінів.

Чутливість до різних ядерРедагувати

Для ЯМР аналізу придатні лише ядра з не нульовим спіном. Чутливість експерименту прямопропорційна до (абсолютного значення) гіромагнітного співвідношення (специфічна характеристика кожного ізотопу) та природнього вмісту досліджуваних ядер. Також важлвий вплив на чутливість має числове значення ядерного спіну. Чутливість експерименту до ядер зі спіном рівним 1/2 (так звані дипольні ядра) зазвичай є вищою ніж до ядер зі спіном більшим ніж 1/2 (так звані квадрупольні ядра) через швидку (зазвичай) релаксацію останніх, а також через розширення і ускладнення ЯМР сигналу за рахунок квадрупольних взаємодій.

Ізотоп Природний
вміст
(%)
Спін Гіромагнітне співвідношення, γn (106 рад·с-1·Т-1) Застосування
для аналізу структури
Частота на 7 T
(MHz)
Відносна чутливість
1H 99,984 1/2 267,522 найширше 300,13 1
2H 0,016 1 41,065 рідко 46,07 0,00965
10B 18,8 3 28,740 рідко 32,25 0,0199
11B 81,2 3/2 85,84 рідко 96,29 0,165
12C 98,9 0 неможливе
13C 1,1 1/2 67,282 часто 75,47 0,0159
14N 99,64 1 19,331 дуже рідко 21,68 0,00101
15N 0,37 1/2 -27,116 аналіз білків 30,41 0,00104
16O 99,76 0 неможливе
19F 100 1/2 251,662 спецзадачі, аналіз 282,40 0,834
28Si 92,28 0 неможливе
29Si 4,70 1/2 −53,190 рідко 59,63 0,0785
31P 100 1/2 108,291 рідко 121,49 0,0664

ХімзсувиРедагувати

Залежать від екранування сусідніми групами (особливо кратними зв'язками) та від електронної густини на атомі. Лінійно залежать від частоти пристрою, тому вимірюються в мільйонних частках (м. д. від рос. миллионная доля), що дорівнює різниці частоти поглинання ядра і стандарту (в Гц), поділеній на частоту ЯМР-спектрометра в МГц і домноженій на 106.

ядро Природний вміст, % Відносна чутливість, % Типовий діапазон, м. д. Стандарт, 0 м. д. Помітки
1H (Гідроген) 100 100 -1…14 ТМС Рутинні аналізи
2D (Дейтерій) <1 0.965 Спеціальні застосування
13C (Карбон) 1 1,59  0...200 ТМС Рутинні аналізи
31P (Фосфор) 100 6,64 -250…300 H3PO4 ДНК, ліпіди
19F (Флюор) 100 83,4 -300...50 CFCl3 Флюоровмісні органічні сполуки

Протонний ЯМРРедагувати

Стандарти — тетраметил силан (ТМС, англ.: TMS), хмімчний зсув 0 ppm; гексаметилдисилоксан (англ.: HMDSO), хімічний зсув 0,05 ppm; Натрій триметилсилілпропансульфонат (англ.: DSS), хімічний зсув основного ЯМР сигналу -0,018 ppm.

Діапазон −0,5…+14 ppm для більшості сполук.

  • Ароматика (слабке поле)
  • Аліфатика
  • O-CH3
  • O-H

13CРедагувати

Таблиця хімзсувів (коротка версія)

19FРедагувати

Дуже чутливий, але діапазон частот лежить близько до протонного. Використовують для аналізу фторорганічних сполук.

31РРедагувати

−250…300

ІншіРедагувати

Рідко використовуютться самостійно через низький природний вміст/чутливість.

Спін-спінова взаємодіяРедагувати

Взаємодія магнітних моментів сусідніх ядер, що призводить до розщеплення спектральних ліній на мультиплети. Не залежить від частоти спектрометра Типові значення для протонів

Ядра Система Діапазон Приклад Гц
HH HCCH (аліфатичні) 0..10 CH3CH2OH 6
H-H HCCH (ароматичні) 0..10 CH3CH2OH 6
C-H CH (аліфатичні) CH3CH2OH
C-H CH (ароматичні) C6H6
F-H FCCH (аліфатичні) CF3CH2OH
P-H PH (ароматичні) HPO(OH)2 700


Нижче показаний трикутник Паскаля. Відносні інтенсивності ліній у мультиплетах першого порядку. Тут n - число сусідніх ядер із спіном 1/2, які мають однакові константи спін-спінової взаємодії.


Розчинники для ЯМРРедагувати

Для ЯМР аналізу зазвичай використовують дейтеровані розчинники для того, щоб запобігти появі дуже інтенсивних сигналів від молекул розчинника, що містить протони, в спектрах 1Н (найчастіше використовуваний тип експерименту). Іншою причиною вживання дейтерованих розчинників є те, що сучасні спектрометри використовують сигнал від дейтерію (2D) для коригування магнітного поля спектрометра і покращення його роздільної здатності. Така процедура називається "локуванням" (field frequency lock) і є (зазвичай) одним з небхідних етапів налаштування спектрометра перед початком експерименту.

Будь-який дейтерований розчинник насправді не має всі 100% протонів заміщених дейтерієм. Тому невелика кількість протонованих молекул розчинник все таки буде присутня у досліджуваному розчині, що призведе до появи малоінтенсивних сигналів від цих молекул в спектрах 1Н. Хімічні зсуви залишкових сигналів 1Н від дейтерованих розчинників є затабульованими і часто використовуються для калібрування спектрів.

На практиці часто буває, що розчинник (а іноді і досліджувана речовина) мість сліди води. В наслідок цього на 1Н спектрах часто можна побачити сигнал від води. Хімічний зсув цього сигналу залежить від розчинника, у якому присутні домішки води. Нижче наведена таблиця хімічних зсувів залишкових 1Н сигналів та сигналів 13С від розчинників, а також хімічні зсуви від слідів води у цих розчинниках.

Розчинник Хімічних зсув

залишкових 1Н сигналів, м. д.

Хімічних зсув

13С сигналів, м. д.

Хімічних зсув 1Н

сигналів від води

у даному розчиннику, м. д.

Ацетатна кислота - d4 11,65

2,04

178,99

20,0

11.5
Ацетон - d6 2,05 206,68

29,92

2,8
Ацетонітрил - d3 1,94 118,69

1,39

2,1
Бензен - d6 7,16 128,39 0,4
Хлороформ - d 7,24 77,23 1,5
Циклогексан - d12 1,38 26,43 0,8
Дейтерій оксид (D2O) 4,8 - 4,8
N, N диметилформамід - d7 8,03

2,92

2,75

163,15

34,89

29,76

3,5
Дтметилсульфоксид - d6 2,50 39,51 3,3
Етанол - d6 5,19

3,56

1,11

56,96

17,31

5,3
Метанол - d4 4,78

3,31

49,15 4,9
Тетрагідрофуран - d8 3,58

1,73

67,57

25,37

2,4-2,5
Піридин - d5 8,74

7,28

7,22

150,35

135,91

123,87

5
Толуен - d8 7,09

7,00

6,98

2,09

137,86

129,24

128,33

125,49

20,4

0,4

ТехнікиРедагувати

Перетворення Фур'єРедагувати

Дискретне перетворення Фур'є Застосовується в більшості сучасних спектрометрів. Дозволяє записувати одночасно сигнали всіх ядер потрібного елемента. Практичного застосування набуло лиш в 1980-х після удосконалення комп'ютерної техніки.

Теоретична основаРедагувати

Збуджують всі ядра одночасно широким сигналом, а потім записуюють криву спаду. ПФ дозволяє отримати спектр в частотному вимірі. Зробивши набір математичних операцій над кривою спаду інтенсивності (FID). В той же час перші моделі ЯМР-спектрометрів збуджували ядра «по-черзі» перебираючи частоти з певним кроком.

2-вимірний ЯМРРедагувати

COSY

Твердофазний ЯМРРедагувати

Застосовують для аналізу нерозчинних речовин та структури в твердому стані. Внаслідок відсутності усереднення сигналу завдяки обертанню молекули в розчині дає набагато складніші для аналізу дані. Важчий для запису. Для зменшення ширини ліній зразок доводиться швидко обертати (тисячі об/с). Використання сигналу протонів сильно утруднене. В останній час набув широкого застосування для аналізу трьохвимірної структури мембранних протеїнів, що не адекватно представляються розчинними моделями (в цьому виподку потрібне повне мічення 13С та 15N).

Складніші технікиРедагувати

ЯМР протеїнівРедагувати

ЯМР-спектроскопія білків потребує особливого підходу оскільки їх молекули містять зазвичай тисячі атомів і «рознесення сигналів» є непростою задачею. Для протеїнів розміром порядку 200 амінокислот застосовують:

  • ізотопно збагачені зразки (N15, C13)
  • кількаденні експерименти для накопичення сигналів
  • хороші спектрометри (500 МГц та вище)
  • багатовимірні техніки, що дозволяють розрізнити пари взаємодіючих (просторово близьких) ядер. Найкращі результати дає 3D-NMR CHN (використовують перенос збудження з протонів на вуглець та азот)

Практичні аспектиРедагувати

 
ЯМР кювета

Програмне забезпеченняРедагувати

Приготування зразківРедагувати

Приготування зразків для рідкофазного ЯМРРедагувати

Для дослідження методом рідкофазного ЯМР зразок розчиняють у дейтерованрму розчиннику з додаванням невеликої кількості стандарту для калібрування спектру (проте спектр часто можна відкалібрувати по залишкових протонних сигналах розчинника). Основна мета використання дейтерованих розчинників - це запобігання перекриттю сигналів від розчинника із сигналами від досліджуваної речовини, проте сучасні спектрометри також використовують сигнали 2D для так званого локу (field frequency lock). Типова маса зразка для 1H ЯМР – 1-10 мг, для 13С ЯМР – 10-50 мг. Типовий об'єм розчинника – 0,5-0,7 мл. Для запису спектру на спектрометрах від компанії Bruker, мінімальній рівень розчину в ЯМР кюветі повинен бути 4 см.

Температура коалесценціїРедагувати

Температура, при якій зникає проміжок між двома окремими (розділеними) сигналами у спектрах ПМР і вони зливаються в один загальний сигнал (спостерігається зокрема у випадку діастереотопних груп конформаційно-мобільної системи).

ДезекрануванняРедагувати

В ЯМР-спектроскопiї — вплив електронної оболонки спостережуваного та сусiднiх з ним ядер на зовнiшнє магнiтне поле, який полягає в його послабленні. Зовнiшнє магнiтне полеiндукує циркуляцiї в електроннiй хмарцi. Результуючий магнiтний момент є зорiєнтованим проти зовнiшнього поля, так що локальне поле на центральному атомi послаблюється, а хімічні зсуви набириють вищих значень.

ДжерелаРедагувати

Веб-підручникиРедагувати

[1](рос.)

Книги російськоюРедагувати

Книги англійськоюРедагувати

Див. такожРедагувати

ПосиланняРедагувати