Інтеграли, що включають r = (x2 + a2 )½
ред.
Інтеграли, що включають s = (x2 - a2 )½
ред.
Інтеграли, що включають u = (a2 - x2 )½
ред.
Інтеграли, що включають S = (ax + b)½
ред.
Інтеграли, що включають
S
=
a
x
+
b
{\displaystyle S={\sqrt {ax+b}}}
:
∫
S
d
x
=
2
S
3
3
a
{\displaystyle \int S{dx}={\frac {2S^{3}}{3a}}}
∫
d
x
S
=
2
S
a
{\displaystyle \int {\frac {dx}{S}}={\frac {2S}{a}}}
∫
d
x
x
S
=
{
−
2
b
a
r
c
o
t
h
(
S
b
)
(for
b
>
0
,
a
x
>
0
)
−
2
b
a
r
t
a
n
h
(
S
b
)
(for
b
>
0
,
a
x
<
0
)
2
−
b
arctan
(
S
−
b
)
(for
b
<
0
)
{\displaystyle \int {\frac {dx}{xS}}={\begin{cases}-{\frac {2}{\sqrt {b}}}\mathrm {arcoth} \left({\frac {S}{\sqrt {b}}}\right)&{\mbox{(for }}b>0,\quad ax>0{\mbox{)}}\\-{\frac {2}{\sqrt {b}}}\mathrm {artanh} \left({\frac {S}{\sqrt {b}}}\right)&{\mbox{(for }}b>0,\quad ax<0{\mbox{)}}\\{\frac {2}{\sqrt {-b}}}\arctan \left({\frac {S}{\sqrt {-b}}}\right)&{\mbox{(for }}b<0{\mbox{)}}\\\end{cases}}}
∫
S
x
d
x
=
{
2
(
S
−
b
a
r
c
o
t
h
(
S
b
)
)
(for
b
>
0
,
a
x
>
0
)
2
(
S
−
b
a
r
t
a
n
h
(
S
b
)
)
(for
b
>
0
,
a
x
<
0
)
2
(
S
−
−
b
arctan
(
S
−
b
)
)
(for
b
<
0
)
{\displaystyle \int {\frac {S}{x}}\,dx={\begin{cases}2\left(S-{\sqrt {b}}\,\mathrm {arcoth} \left({\frac {S}{\sqrt {b}}}\right)\right)&{\mbox{(for }}b>0,\quad ax>0{\mbox{)}}\\2\left(S-{\sqrt {b}}\,\mathrm {artanh} \left({\frac {S}{\sqrt {b}}}\right)\right)&{\mbox{(for }}b>0,\quad ax<0{\mbox{)}}\\2\left(S-{\sqrt {-b}}\arctan \left({\frac {S}{\sqrt {-b}}}\right)\right)&{\mbox{(for }}b<0{\mbox{)}}\\\end{cases}}}
∫
x
n
S
d
x
=
2
a
(
2
n
+
1
)
(
x
n
S
−
b
n
∫
x
n
−
1
S
d
x
)
{\displaystyle \int {\frac {x^{n}}{S}}dx={\frac {2}{a(2n+1)}}\left(x^{n}S-bn\int {\frac {x^{n-1}}{S}}dx\right)}
∫
x
n
S
d
x
=
2
a
(
2
n
+
3
)
(
x
n
S
3
−
n
b
∫
x
n
−
1
S
d
x
)
{\displaystyle \int x^{n}Sdx={\frac {2}{a(2n+3)}}\left(x^{n}S^{3}-nb\int x^{n-1}Sdx\right)}
∫
1
x
n
S
d
x
=
−
1
b
(
n
−
1
)
(
S
x
n
−
1
+
(
n
−
3
2
)
a
∫
d
x
x
n
−
1
S
)
{\displaystyle \int {\frac {1}{x^{n}S}}dx=-{\frac {1}{b(n-1)}}\left({\frac {S}{x^{n-1}}}+\left(n-{\frac {3}{2}}\right)a\int {\frac {dx}{x^{n-1}S}}\right)}
Інтеграли, що включають R = (ax2 + bx + c)½
ред.
Інтеграли, що включають
R
=
a
x
2
+
b
x
+
c
{\displaystyle R={\sqrt {ax^{2}+bx+c}}}
:
Нехай (ax 2 + bx + c ) не можна привести до вигляду (px + q )2 для деяких p та q , тоді:
∫
d
x
R
=
1
a
ln
|
2
a
R
+
2
a
x
+
b
|
(for
a
>
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln \left|2{\sqrt {a}}R+2ax+b\right|\qquad {\mbox{(for }}a>0{\mbox{)}}}
∫
d
x
R
=
1
a
arsinh
2
a
x
+
b
4
a
c
−
b
2
(for
a
>
0
,
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\,\operatorname {arsinh} {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}>0{\mbox{)}}}
∫
d
x
R
=
1
a
ln
|
2
a
x
+
b
|
(for
a
>
0
,
4
a
c
−
b
2
=
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln |2ax+b|\quad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}=0{\mbox{)}}}
∫
d
x
R
=
−
1
−
a
arcsin
2
a
x
+
b
b
2
−
4
a
c
(for
a
<
0
,
4
a
c
−
b
2
<
0
,
|
2
a
x
+
b
|
<
b
2
−
4
a
c
)
{\displaystyle \int {\frac {dx}{R}}=-{\frac {1}{\sqrt {-a}}}\arcsin {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}a<0{\mbox{, }}4ac-b^{2}<0{\mbox{, }}\left|2ax+b\right|<{\sqrt {b^{2}-4ac}}{\mbox{)}}}
∫
d
x
R
3
=
4
a
x
+
2
b
(
4
a
c
−
b
2
)
R
{\displaystyle \int {\frac {dx}{R^{3}}}={\frac {4ax+2b}{(4ac-b^{2})R}}}
∫
d
x
R
5
=
4
a
x
+
2
b
3
(
4
a
c
−
b
2
)
R
(
1
R
2
+
8
a
4
a
c
−
b
2
)
{\displaystyle \int {\frac {dx}{R^{5}}}={\frac {4ax+2b}{3(4ac-b^{2})R}}\left({\frac {1}{R^{2}}}+{\frac {8a}{4ac-b^{2}}}\right)}
∫
d
x
R
2
n
+
1
=
2
(
2
n
−
1
)
(
4
a
c
−
b
2
)
(
2
a
x
+
b
R
2
n
−
1
+
4
a
(
n
−
1
)
∫
d
x
R
2
n
−
1
)
{\displaystyle \int {\frac {dx}{R^{2n+1}}}={\frac {2}{(2n-1)(4ac-b^{2})}}\left({\frac {2ax+b}{R^{2n-1}}}+4a(n-1)\int {\frac {dx}{R^{2n-1}}}\right)}
∫
x
R
d
x
=
R
a
−
b
2
a
∫
d
x
R
{\displaystyle \int {\frac {x}{R}}\;dx={\frac {R}{a}}-{\frac {b}{2a}}\int {\frac {dx}{R}}}
∫
x
R
3
d
x
=
−
2
b
x
+
4
c
(
4
a
c
−
b
2
)
R
{\displaystyle \int {\frac {x}{R^{3}}}\;dx=-{\frac {2bx+4c}{(4ac-b^{2})R}}}
∫
x
R
2
n
+
1
d
x
=
−
1
(
2
n
−
1
)
a
R
2
n
−
1
−
b
2
a
∫
d
x
R
2
n
+
1
{\displaystyle \int {\frac {x}{R^{2n+1}}}\;dx=-{\frac {1}{(2n-1)aR^{2n-1}}}-{\frac {b}{2a}}\int {\frac {dx}{R^{2n+1}}}}
∫
d
x
x
R
=
−
1
c
ln
(
2
c
R
+
b
x
+
2
c
x
)
{\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\ln \left({\frac {2{\sqrt {c}}R+bx+2c}{x}}\right)}
∫
d
x
x
R
=
−
1
c
arsinh
(
b
x
+
2
c
|
x
|
4
a
c
−
b
2
)
{\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\operatorname {arsinh} \left({\frac {bx+2c}{|x|{\sqrt {4ac-b^{2}}}}}\right)}
Інтеграли, що включають Y = (ax2 +bx+c)(2m+1) ⁄2
ред.