Відкрити головне меню

Пото́чкова взає́мна інформа́ція (ПВІ, англ. pointwise mutual information, PMI),[1] або то́чкова взає́мна інформа́ція (англ. point mutual information) — це міра пов'язаності, що використовується в теорії інформації та статистиці. На відміну від взаємної інформації (ВІ), що будується на ПВІ, вона стосується одиничних подій, тоді як ВІ стосується усереднення всіх можливих подій.

ВизначенняРедагувати

ПВІ пари результатів x та y, що належать дискретним випадковим змінним X та Y, дає кількісну оцінку розбіжності між імовірністю їхнього збігу за заданого їхнього спільного розподілу, та їхніми особистими розподілами за умови їхньої незалежності. Математично:

 

Взаємна інформація (ВІ) випадкових змінних X та Y є математичним сподіванням значення ПВІ над усіма можливими результатами (по відношенню до спільного розподілу  ).

Ця міра є симетричною ( ). Вона може набувати додатних та від'ємних значень, але є нульовою, якщо X та Y є незалежними. Зауважте, що хоча ПВІ й може бути додатною або від'ємною, її математичне сподівання над усіма спільними подіями (ВІ) є додатним. ПВІ досягає максимуму тоді, коли X та Y є цілком пов'язаними (тобто,   або  ), даючи наступні межі:

 

Нарешті,   збільшуватиметься за незмінної  , але зменшуваної  .

Ось приклад для ілюстрації:

x y p(xy)
0 0 0.1
0 1 0.7
1 0 0.15
1 1 0.05

Використовуючи цю таблицю, ми можемо здійснити відособлювання, щоби отримати наступну додаткову таблицю для особистих розподілів:

p(x) p(y)
0 0.8 0.25
1 0.2 0.75

У цьому прикладі ми можемо обчислити чотири значення  . Із застосуванням логарифмів за основою 2:

pmi(x=0;y=0) = −1
pmi(x=0;y=1) = 0.222392
pmi(x=1;y=0) = 1.584963
pmi(x=1;y=1) = -1.584963

(Для довідки, взаємною інформацією   тоді буде 0.2141709)

Схожості зі взаємною інформацієюРедагувати

Поточкова взаємна інформація має багато відношень, однакових зі взаємною інформацією. Зокрема,

 

де   є власною інформацією, або  .

Нормалізована поточкова взаємна інформація (НПВІ)Редагувати

Поточкову взаємну інформацію може бути нормалізовано в проміжку [-1,+1], що дає в результаті -1 (у границі) для спільної появи ніколи, 0 — для незалежності та +1 — для цілковито спільної появи[en].[2]

 

Варіанти ПВІРедагувати

На додачу до наведеної вище НПВІ, ПВІ має багато інших цікавих варіантів. Порівняльне дослідження цих варіантів можна знайти в [3]

Ланцюгове правило для ПВІРедагувати

Як і взаємна інформація,[4] поточкова взаємна інформація слідує ланцюговому правилу, тобто,

 

Це може бути легко доведено як

 

ЗастосуванняРедагувати

В математичній лінгвістиці ПВІ використовували для знаходження сполучень та пов'язаності слів. Наприклад, підрахунок[en] появ та спільних появ[en] слів у корпусі текстів[en] можна використовувати для наближення ймовірностей   та   відповідно. Наступна таблиця показує кількості пар слів, що отримали найвищі та найнижчі рівні ПВІ у перших 50 мільйонах слів англомовної Вікіпедії (дамп від жовтня 2015 року), відфільтрованих за 1 000 чи більше спільних появ. Частоту кожної з кількостей можна отримати діленням її значення на 50 000 952. (Зауваження: в цьому прикладі для обчислення значень ПВІ використано натуральний логарифм замість логарифму за основою 2)

слово 1 слово 2 кількість слів 1 кількість слів 2 кількість спільних появ ПВІ
puerto rico 1938 1311 1159 10.0349081703
hong kong 2438 2694 2205 9.72831972408
los angeles 3501 2808 2791 9.56067615065
carbon dioxide 4265 1353 1032 9.09852946116
prize laureate 5131 1676 1210 8.85870710982
san francisco 5237 2477 1779 8.83305176711
nobel prize 4098 5131 2498 8.68948811416
ice hockey 5607 3002 1933 8.6555759741
star trek 8264 1594 1489 8.63974676575
car driver 5578 2749 1384 8.41470768304
it the 283891 3293296 3347 -1.72037278119
are of 234458 1761436 1019 -2.09254205335
this the 199882 3293296 1211 -2.38612756961
is of 565679 1761436 1562 -2.54614706831
and of 1375396 1761436 2949 -2.79911817902
a and 984442 1375396 1457 -2.92239510038
in and 1187652 1375396 1537 -3.05660070757
to and 1025659 1375396 1286 -3.08825363041
to in 1025659 1187652 1066 -3.12911348956
of and 1761436 1375396 1190 -3.70663100173

Добре сполучені пари мають високу ПВІ, оскільки ймовірність спільної появи є лише трошки нижчою за ймовірності появи кожного зі слів. З іншого боку, пара слів, ймовірності появи яких є значно вищими за ймовірність їхньої спільної появи, отримує низький рівень ПВІ.

ПриміткиРедагувати

  1. Kenneth Ward Church and Patrick Hanks (March 1990). Word association norms, mutual information, and lexicography. Comput. Linguist. 16 (1): 22–29.  (англ.)
  2. Bouma, Gerlof (2009). Normalized (Pointwise) Mutual Information in Collocation Extraction. Proceedings of the Biennial GSCL Conference.  (англ.)
  3. Francois Role, Moahmed Nadif. Handling the Impact of Low frequency Events on Co-occurrence-based Measures of Word Similarity:A Case Study of Pointwise Mutual Information. Proceedings of KDIR 2011 : KDIR- International Conference on Knowledge Discovery and Information Retrieval, Paris, October 26-29 2011 (англ.)
  4. Paul L. Williams. INFORMATION DYNAMICS: ITS THEORY AND APPLICATION TO EMBODIED COGNITIVE SYSTEMS.  (англ.)

ЛітератураРедагувати

ПосиланняРедагувати