В математиці, послідовностями Люка називають сімейство пар лінійних рекурентних послідовностей другого порядку, вперше розглянутих Едуардом Люка.

Послідовності Люка являють собою пари послідовностей и , що задовольняють одному і тому ж рекурентному співвідношенню з коефіцієнтами P і Q:

ПрикладиРедагувати

Деякі послідовності Люка носять власні імена:

Явні формулиРедагувати

Характеристичним многочленом послідовностей Люка   та   є:

 

Його дискримінант   вважається не рівним нулю. Корені характеристичного многочлена

  и  

можна використовувати для отримання явних формул:

 

та

 

ВластивостіРедагувати