Локально однозв'язний простір
У математиці, зокрема у топології, топологічний простір називається локально однозв'язним якщо для нього існує база топології елементами якої є однозв'язні множини.[1][2]
Іншими словами простір є локально однозв'язним якщо для кожної точки і її околу існує відкрита однозв'язна (у індукованій топології) множина для якої
Приклади
ред.- Коло є прикладом локально однозв'язного простору, що не є однозв'язним.
- Гавайська сережка є прикладом простору, що не є локально однозв'язним і навіть напівлокально однозв'язним.
- Конус над гавайською сережкою є стягуваним простором, а отже однозв'язним і тому напівлокально однозв'язним. Але він не є локально однозв'язним. Цей приклад показує, що умова локальної однозв'язності є строго сильнішою, ніж умова напівлокальної однозв'язності.
- Топологічні многовиди і CW комплекси є локально стягуваними просторами, а отже і локально однозв'язними.
Властивості
ред.- Кожен локально однозв'язний простір є також локально лінійно зв'язним і локально зв'язним.
Примітки
ред.- ↑ Munkres, James R. (2000). Topology (вид. 2nd). Prentice Hall. ISBN 0-13-181629-2.
- ↑ Hatcher, Allen (2002). Algebraic Topology. Cambridge University Press. ISBN 0-521-79540-0. Архів оригіналу за 20 лютого 2012. Процитовано 22 квітня 2020.