Критерій Сильвестра
Критерій Сильвестра визначає чи є ермітова матриця додатно визначеною (від'ємноозначеною). Названий за іменем англійського математика Джеймса Джозефа Сильвестра.
Якщо квадратична форма в деякому базисі має матрицю .
- .
- Квадратична форма є додатно визначеною тоді і тільки тоді, коли всі кутові мінори її матриці строго додатні.
- Квадратична форма є від'ємно визначеною тоді і тільки тоді, коли знаки всіх кутових мінорів її матриці чергуються, причому .
Доведення критерію Сильвестра базується на методі Якобі приведення квадратичної форми до канонічного вигляду.
Джерела
ред.- Гантмахер Ф. Р. Теорія матриць. — 2024. — 400+ с.(укр.)
- Гельфанд И. М. Лекции по линейной алгебре. — 5-е. — Москва : Наука, 1998. — 320 с. — ISBN 5791300158.(рос.)
- Ланкастер П. . Теория матриц. — 2. — Москва : Наука, 1982. — 272 с.(рос.)
- Gilbert, George T. (1991), Positive definite matrices and Sylvester's criterion, The American Mathematical Monthly, Mathematical Association of America, 98 (1): 44—46, doi:10.2307/2324036, ISSN 0002-9890, JSTOR 2324036.
- Р.Хорн , Ч.Джонсон . Матричный анализ. — М: : Мир, 1989. — 653 с.(рос.). See Theorem 7.2.5.
- Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, ISBN 0-89871-454-0.
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |