Аксіома зліченного вибору
Аксіома зліченного вибору — аксіома теорії множин, зазвичай позначається Аксіома стверджує, що для зліченного сімейства непорожніх множин існує функція вибору. Тобто, для цього сімейства можна побудувати послідовність з їхніх елементів (по одному з кожної).
Властивості
ред.Аксіома зліченного вибору є слабшою за аксіому залежного вибору, а та в свою чергу слабша за аксіому вибору.
Ця аксіома, на відміну від аксіоми вибору не призводить до неінтуїтивних результатів, як: парадокс Банаха — Тарського (подвоєння кулі).
Аксіоми достатньо для більшості теорем аналізу, зокрема:
- для довільної граничної точки існує збіжна до неї послідовність;
- міра Лебега зліченно-адитивна;
- об'єднання зліченної кількості зліченних множин є зліченним;
- довільна нескінченна множина містить зліченну підмножину.
Але для теорії множин, цієї аксіоми часто не достатньо. Наприклад, без повної аксіоми вибору не можливо довести, що довільна множина може бути цілком впорядковано.
Джерела
ред.- Александров П.С. Введение в теорию множеств и общую топологию. — Москва : Наука, 1977. — 368 с. — ISBN 5354008220.(рос.)
- Куратовский К., Мостовский А. Теория множеств = Set Theory (Teoria mnogości). — М. : Мир, 1970. — 416 с.(рос.)