Теорема про рух центра мас системи
Теорема про рух центра мас (центра інерції) системи — одна із загальних теорем динаміки, є наслідком законів Ньютона. Стверджує, що прискорення центра мас механічної системи не залежить від внутрішніх сил, що діють на тіла системи, і пов'язує це прискорення з зовнішніми силами, що діють на систему[1][2].
Об'єктами, про які йдеться в теоремі, можуть, зокрема, бути такі:
- система матеріальних точок;
- протяжне тіло або система протяжних тіл;
- взагалі будь-яка механічна система, що складається з будь-яких тіл.
Формулювання теореми
ред.Нерідко під час розгляду руху системи корисно знати закон руху її центра мас. У загальному випадку цей закон, що становить зміст твердження теореми про рух центра мас системи, формулюється так[1]:
Добуток маси системи на прискорення її центра мас дорівнює геометричній сумі всіх зовнішніх сил, що діють на систему.
Доведення
ред.Нехай система складається з матеріальних точок з масами і радіус-векторами . Як відомо[1][3], центром мас (центром інерції) системи матеріальних точок називається геометрична точка, радіус-вектор якої задовольняє рівності
де — маса всієї системи, що дорівнює
Диференціюючи (1) два рази за часом, для прискорення центра мас отримуємо:
де — прискорення матеріальної точки з номером i.
Для подальшого розгляду доцільно розділити всі сили, що діють на тіла системи, на два типи:
- Зовнішні сили — сили, що діють з боку тіл, які не входять у дану систему. Рівнодійну зовнішніх сил, що діють на матеріальну точку з номером i, позначимо .
- Внутрішні сили — сили, з якими взаємодіють тіла самої системи. Силу, з якою на точку з номером i діє точка з номером k, будемо позначати . Відповідно, сила впливу i-ї точки на k-ту точку буде позначатися . Зі сказаного очевидно, що якщо , то
Використовуючи введені позначення, другий закон Ньютона для кожної з розглянутих матеріальних точок можна записати у вигляді
Підсумовуючи всі рівняння вигляду (3), отримаємо:
Вираз являє собою суму всіх внутрішніх сил, що діють у системі. Врахуємо тепер, що за третім законом Ньютона в цій сумі кожній силі відповідає сила така, що і, отже, виконується Оскільки вся сума складається з таких пар, то й сама сума дорівнює нулю. Таким чином, з (4) слідує
Далі, позначивши і підставивши отриманий вираз у (2), приходимо до рівняння
- або до
Таким чином, рух центра мас визначається тільки зовнішніми силами, а внутрішні сили ніякого впливу на цей рух не мають. Формула (6) є математичним виразом теореми про рух центра мас системи.
Інше формулювання теореми
ред.Звернемо увагу на те, що вигляд формули (6) збігається з виглядом формули другого закону Ньютона. Звідси випливає справедливість такого формулювання теореми про рух центра мас[1][3]:
Центр мас рухається так, як рухалася б матеріальна точка, маса якої дорівнює масі системи, під дією сили, яка дорівнює сумі всіх зовнішніх сил, що діють на систему.
Закон збереження руху центра мас
ред.З (6) випливає, що за відсутності зовнішніх сил, а також за рівності суми всіх зовнішніх сил нулю, прискорення центра мас дорівнює нулю, і, отже, його швидкість постійна. Таким чином, справедливим є твердження, що становить зміст закону збереження руху центру мас:
Якщо сума зовнішніх сил, що діють на систему, дорівнює нулю, то центр мас такої системи рухається зі сталою швидкістю, тобто рівномірно і прямолінійно.
Зокрема, якщо спочатку центр мас перебував у спокої, то в зазначених умовах він перебуватиме в спокої й надалі.
Із закону збереження руху центра мас випливає, що система відліку, пов'язана з центром мас замкнутої системи, є інерціальною. Під час вивчення механічних властивостей замкнутих систем надається перевага використанню саме таких систем відліку, оскільки таким чином виключається з розгляду рівномірний і прямолінійний рух системи як цілого.
Можливі випадки, коли сума зовнішніх сил нулю не дорівнює, але дорівнює нулю її проєкція на певний напрямок. В цьому випадку проєкція прискорення центра мас на цей напрямок також дорівнює нулю і, відповідно, швидкість центра мас уздовж цього напрямку не змінюється.
Значення
ред.Доведена теорема розширює і обґрунтовує можливості використання поняття матеріальна точка для опису руху тіл. Дійсно, якщо тіло рухається поступально, то його рух повністю визначається рухом центра мас, який у свою чергу описується рівнянням (6). Таким чином, тіло, що рухається поступально, завжди можна розглядати як матеріальну точку з масою, що дорівнює масі тіла, незалежно від його геометричних розмірів. Крім того, тіло можна розглядати як матеріальну точку й у всіх тих випадках, коли, в силу умови задачі, обертання тіла інтересу не являє, а для визначення положення тіла достатньо знати положення його центра мас.
Практична цінність теореми полягає в тому, що при розв'язуванні задачі про визначення характеру руху центра мас вона дозволяє повністю виключити з розгляду всі внутрішні сили.
Історія
ред.Закон збереження руху центра мас сформулював Ісаак Ньютон у своїй знаменитій праці «Математичні начала натуральної філософії», виданій 1687 року. І. Ньютон писав: «Центр ваги системи двох або декількох тіл від взаємної дії тіл одного на інше не змінює ні свого стану спокою, ні руху; тому центр ваги системи всіх тіл, що діють одне на одне (за відсутності зовнішніх дій і перешкод) або знаходиться в спокої, або рухається рівномірно і прямолінійно»[4]. Далі він робив висновок: «Таким чином, поступальну кількість руху чи окремого тіла, чи системи тіл, треба завжди розраховувати за рухом центра ваги їх».
Див. також
ред.Примітки
ред.- ↑ а б в г Тарг С. М. Краткий курс теоретической механики. — Москва : Высшая школа, 1995. — С. 273-280. — 416 с. — ISBN 5-06-003117-9.
- ↑ Сивухин Д. В. Общий курс физики. — Москва : Физматлит; Изд-во МФТИ, 2005. — Т. I. Механика. — С. 115-116. — 560 с. — ISBN 5-9221-0225-7.
- ↑ а б Тарг С. М. Центр инерции (центр масс) // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1999. — Т. 5: Стробоскопические приборы — Яркость. — С. 624-625. — 692 с. — 20 000 экз. — ISBN 5-85270-101-7.
- ↑ Ісаак Ньютон. Математические начала натуральной философии = Philosophia naturalis principia matematica / Перевод с латинского и примечания А. Н. Крылова. — М. : Наука, 1989. — С. 45-49. — 688 с. — (Классики науки). — ISBN 5-02-000747-1.