Теорема Паскаля — теорема проєктивної геометрії, яка свідчить, що

Шестикутник вписаний в еліпс, точки перетину трьох пар протилежних сторін лежать на одній (червоній) прямій

Якщо шестикутник вписаний в коло або будь-який інший конічний перетин (еліпс, параболу, гіперболу, навіть пару прямих), то точки перетину трьох пар протилежних сторін лежать на одній прямій.

Теорема Паскаля двоїста до теореми Бріаншона.

Історія ред.

Вперше сформульована і доведена Блезом Паскалем у 16 років як узагальнення теореми Паппа. Цю теорему Паскаль взяв за основу свого трактату про конічні перетини. Сам трактат пропав і відомий лише його короткий зміст з листа Лейбніца, який під час свого перебування в Парижі мав його у своїх руках, і короткий виклад основних теорем цього трактату, складений самим Паскалем (Есе про конічні перетини).

Про доведення ред.

  • Одне з доведень базується на підрахунку подвійних відношень.
  • Ще одне доведення ґрунтується на послідовному застосуванні теореми Менелая.
  • Проєктивним перетворенням можна перевести описану коніку в коло, при цьому умова теореми збережеться. Для кола теорема може бути доведена з існування ізогонального спряження.
    • У разі опуклого багатокутника, вписаного в коло, можна здійснити проєктивне перетворення, що залишає коло на місці, а пряму, що проходить через точки перетину двох пар протилежних сторін відвести на нескінченність. У цьому випадку твердження теореми стане очевидним.

Застосування ред.

  • Дозволяє будувати конічний перетин по п'яти точках як геометричне місце точок відповідних шостій точці шестикутника в конфігурації.

Варіації і узагальнення ред.

Теорема правильна і в тому випадку, коли дві або навіть три сусідніх вершини збігаються (але не більше ніж по дві в одній точці).

У цьому випадку як пряма, що проходить через дві вершини, що збігаються, приймається дотична до лінії в цій точці.

Зокрема:

Дотична до лінії 2-го порядку, проведена в одній з вершин вписаного п'ятикутника, перетинається зі стороною, протилежної цій вершині, в точці, яка лежить на прямій, що проходить через точки перетину інших пар несуміжних сторін цього п'ятикутника.


Якщо ABCD — чотирикутник, вписаний в лінію 2-го порядку, то точки перетину дотичних в вершинах С і D відповідно зі сторонами AD і ВС і точка перетину прямих А В і CD лежать на одній прямій.


Точки перетину дотичних в вершинах трикутника, вписаного в лінію 2-го порядку, з протилежними сторонами лежать на одній прямій.

Ця пряма називається прямою Паскаля даного трикутника.

 
Шестикутник ABCDEF (праворуч) вписаний в коло, точки перетину трьох пар продовжень його протилежних сторін лежать (ліворуч) на одній (синій) прямій MNP (пряма Паскаля)
 
Теорема правильна навіть для вписаного в коло шестикутника ABCDEF, що має самоперетини. Пари (кожна свого кольору — червоного, жовтого, синього) його протилежних продовжених сторін перетинаються на лінії Паскаля (біла)

У 1847 з'явилося узагальнення теореми Паскаля, зроблене Мебіусом, яке звучить так:

Якщо багатокутник з   сторонами вписаний в конічний перетин і протилежні його сторони продовжені таким чином, щоб перетнутися в   точці, то якщо   цих точок лежать на прямій, остання точка теж буде лежати на цій прямій.

Теорема Кіркмана:

Нехай точки  ,  ,  ,  ,   та   лежать на одному конічному перетині. Тоді прямі Паскаля шестикутників  ,   та   перетинаються в одній точці.

Посилання ред.

Див. також ред.