Синглетний стан
Синглетний стан або синглет — це система з двох частинок, сумарний спін яких дорівнює 0. Комбінуючи пару з частинок, кожна з яких має спін 1/2, можна отримати три власні стани із сумарним спіном 1 (триплет) і один стан із сумарним спіном 0, який називають синглет[1]. У теоретичній фізиці терміном синглет зазвичай позначають одновимірне подання (наприклад, частинка з нульовим спіном). Також цим терміном можуть позначати дві й більше частинок, отриманих у сплутаному стані, із загальним моментом імпульсу рівним нулю. Синглет і подібні до нього терміни часто зустрічаються в атомній і ядерній фізиці для опису сумарного спіну деякого числа частинок.
Спін одиничного електрона дорівнює 1/2. Така система має сумарний спин рівний 1/2 і має назву дублет . Практично всі випадки дублетів у природі виникають із обертової симетрії: спін 1/2 відноситься до фундаментальних представлень групи Лі SU(2) — групи, яка визначає симетрію обертання в тривимірному просторі[2]. Ми можемо знайти спін такої системи, використовуючи оператор , і як результат завжди отримаємо (або спін 1/2), оскільки різноспрямовані спіни є власними станами (власними функціями) цього оператора з тим самим власним значенням. Аналогічно, для системи з двох електронів ми можемо порахувати спін, скориставшись оператором , де відповідає першому електрону, а другому. Однак, оскільки два електрони можна скомбінувати чотирма способами, то в цьому випадку ми можемо отримати два можливі спіни, що являють собою два можливі власні значення повного оператора спіну — 0 і 1. Кожне з цих власних значень відповідає набору власних станів або власних функцій. У термінах квантової механіки, це спінові функції для двоелектронної системи, отримані лінійною комбінацією спінових функцій електронів α=+1/2 та β=—1/2. Так, наприклад, функція
— симетрична спінова функція, тоді як функція
— антисиметрична[3].
Таким чином, можна отримати три симетричні функції з повним спіновим квантовим числом S=1 і одну антисиметричну функцію з S=0. Набір зі спіном рівним 0 називають синглетом, містить один власний стан (див. нижче), а набір зі спіном 1, званий триплетом, містить три можливі власні стани. У позначеннях Дірака ці власні стани записують як:
Висловлюючись математичною мовою, можна сказати, що тензорний добуток двох дублетних представлень можна розкласти в суму приєднаного представлення (триплет) і тривіальне представлення (синглет).
Пара електронів, що перебуває в синглетному стані, має багато цікавих властивостей і відіграє фундаментальну роль у парадоксі Ейнштейна — Подольського — Розена і квантовій заплутаності .
Див. також
ред.Примітки
ред.- ↑ D. J. Griffiths[en], Introduction to Quantum Mechanics, Prentice Hall, Inc., 1995, pg. 165.
- ↑ J. J. Sakurai Modern Quantum Mechanics, Addison Wesley, 1985.
- ↑ Хабердитцл, 1974, с. 209.
Література
ред.- В. Хабердитцл. Строение материи и химическая связь = W. Haberditzl Bausteine der Materie und chemische Bindung / пер. с нем. канд. хим. наук В. В. Дуниной; под ред. доктора хим. наук Н. С. Зефирова. — № 3/7316. — М. : Мир, 1974. — 296 с.