Аксіома паралельності Евкліда
Аксіо́ма парале́льності Евклі́да, або п'я́тий постула́т — одна з аксіом, що лежать в основі класичної планіметрії. Вперше наведена в «Началах» Евкліда:
|
П'ятий постулат дуже сильно відрізняється від інших постулатів Евкліда, простих та інтуїтивно очевидних (див. Начала Евкліда). Тому протягом 2 тисячоліть не припинялися спроби виключити його зі списку аксіом і вивести як теорему. Всі ці спроби закінчилися невдачею. «Ймовірно, неможливо в науці знайти більш захопливу і драматичну історію, ніж історія п'ятого постулату Евкліда»[1]. Незважаючи на негативний результат, ці пошуки не були марними, оскільки врешті-решт привели до повного перегляду наукових уявлень про геометрію Всесвіту.
Еквівалентні формулювання постулату про паралельність
ред.У сучасних джерелах зазвичай приводиться друге формулювання постулату про паралельність, що належить Проклу та часто називається аксіомою Плейфера, яка еквівалентна (рівносильна) V постулату[2]:
У площині через точку, що не лежить на даній прямій, можна провести щонайбільше одну пряму, паралельну даній.
Дивись також
ред.Примітки
ред.- ↑ Смилга, 1988, с. 4.
- ↑ История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М. : Наука, 1970. — Т. I. — С. 110. Архівовано з джерела 25 листопада 2018
Посилання
ред.- Александров А. Д. Тупость и гений. «Квант», №№ 11, 12 (1982). Архів оригіналу за 18 серпня 2011. Процитовано 9 жовтня 2009.
- Возникновение неевклидовой геометрии. Архів оригіналу за 18 серпня 2011. Процитовано 9 жовтня 2009.
- Пятый постулат Евклида. Архів оригіналу за 20 серпня 2011. Процитовано 9 жовтня 2009.