Неіржавна сталь

стійка до корозії у атмосфері та агресивних середовищах сталь з вмістом хрому не менше 11,5% та малим вмістом вуглецю (0,03…0,20%)

Неіржавіюча[1] сталь — стійка до корозії в атмосфері й агресивних середовищах сталь із вмістом хрому не менше 11,5 % та малим вмістом вуглецю (0,03—0,20 %). Стійкість досягається легуванням. Основний легуючий елемент неіржавіючої сталі — хром (11,5—20 %). Вищий вміст хрому в сталі дає більший опір корозії, сплави з понад 12 % хрому не іржавіють у звичайних умовах і в слабко агресивних середовищах, понад 17 % — корозієстійкі в агресивних окиснювальних середовищах, зокрема в азотній кислоті концентрації до 50 %.

Облицювання з неіржавіючої сталі, яке використане при спорудженні концертного залу імені Волта Діснея (Лос-Анджелес, США)

ІсторіяРедагувати

Корозійна стійкість сплаву хрому з залізом відкрита 1821 року французьким металургом П'єром Бертьє, проте за наявних тоді технологій сплав був непрактичний через високу ламкість. У 1890-х німецький хімік Ганс Гольдшміт (Hans Goldschmidt[en]) винайшов алюміно термічний спосіб одержання сплаву.

Американський дослідник Елвуд Гейнс[en] 1907 року патентував нікелево-хромовий сплав стеліт, а 1910 року опублікував статтю на Міжнародному конгресі прикладної хімії[2].

Німецька компанія Friedrich Krupp AG 1908 року збудувала 366-тонний вітрильник Германія[de] з корпусом із нікель-хромового сплаву сталі[3], 1912 року запатентувала аустенітну нержавіючу сталь і розгорнула її виробництво[4].

Класифікація неіржавіючих сталей за структуроюРедагувати

За структурою неіржавіючі сталі бувають аустенітними, феритними, дуплексними (феритно-аустенітними) та мартенситними.

  • Аустенітні неіржавіючі сталі разом із хромом (на рівні 15—20 %) містять нікель (5—15 %), який збільшує опір корозії. Вони є немагнітними. Добре піддаються тепловій обробці та зварюванню. З підвищенням вмісту хрому (20—25 %) та нікелю (10—20 %) аустенітні неіржавіючі сталі мають кращу стійкість до окиснення за високих температур, їх ще називають жароміцними сталями.
  • Феритні неіржавіючі сталі за властивостями подібні до вуглецевих сталей, але є корозієстійкими, легко піддаються обробці; хрому містять, зазвичай на рівні 13—17 %; є магнітними.
  • Дуплексні неіржавіючі сталі мають змішану феритно-аустенітну структуру. Вміст хрому на рівні 18—28 % та нікелю в межах 4,5—8 %. Додаткові легувальні елементи — молібден, мідь, титан, ніобій. Хімічний склад цих сталей такий, що співвідношення аустеніту і фериту після оптимальної термічної обробки становить приблизно 1:1. Цей клас сталей має ряд переваг порівняно з аустенітною сталлю: вища (у 1,5—2 рази) міцність при задовільній пластичності та стійкості до дії ударних навантажень.
  • Мартенситні неіржавіючі сталі містять зазвичай близько 12—14 % хрому та мають порівняно збільшений вміст вуглецю (0,2—0,4 %), є магнітними. Вони зміцнюються загартуванням і відпуском. Такі сталі проявляють високий опір процесам старіння.

Аустенітні та феритні неіржавіючі сталі становлять приблизно 95 % всіх неіржавіючих сталей, які використовуються в промисловості.

ВикористанняРедагувати

В техніці за хімічним складом найчастіше застосовують хромові і хромонікелеві корозійностійкі сталі.

Хромові сталіРедагувати

Хромові корозійностійкі сталі можуть містити 13, 17 або 25…27 % хрому. Сталі марок 08X13, 12X13, 20X13 піддаються гартуванню від 1000 °C і відпуску при 600…700 °C. Їх застосовують для виготовлення деталей з підвищеною пластичністю, що працюють в слабо агресивному середовищі. Сталі 30X13, 40X13 піддаються гартуванню і відпуску при 200…300 °C. З них виготовляють різальний, вимірювальний та хірургічний інструмент.

Сталі 12X17, 15X28 мають вищу корозійну стійкість. Піддаються відпалу при температурі 700…780 °C. Використовуються для виготовлення устаткування заводів легкої і харчової промисловості, труб, що працюють в агресивному середовищі, кухонного посуду.

Хромонікелеві та хром нікель марганцеві сталіРедагувати

Хромонікелеві сталі звичайно містять 18 % хрому і 9…12 % нікелю (04Х18Н10, 12X18H10Т, 12X18H12T і ін.). Вони мають вищу корозійну стійкість в порівнянні з хромовими сталями, кращі механічні властивості, добре зварюються. Ці сталі мають аустенітну структуру. Їх термообробка складається з гартування від температури 1100…1150 °C у воді без відпуску. Нержавіючі хромонікелеві сталі аустенітного класу немагнітні.

Хромонікелеві сталі схильні до міжкристалічної корозії. Вона швидко розповсюджується по границях зерен без помітних зовнішніх ознак. Це відбувається унаслідок утворення карбідів хрому по границях зерен, що приводить до зменшення вмісту хрому в поверхневому шарі зерна. Щоб карбіди хрому не утворювалися, треба або використовувати, сталі з пониженим вмістом вуглецю (до 0,04 %), або додатково легувати сталь титаном, що зв'язує вуглець в карбід титану.

Використовуються хромонікелеві сталі в харчовій і хімічній промисловості, у холодильній техніці. Оскільки нікель дорогий елемент, іноді його частково замінюють марганцем і використовують сталь 10Х14Г, 14Н4Т (хром нікель марганцеві сталі). Хромонікелеві і хром нікель марганцеві сталі служать матеріалом для деталей апаратів і виробів, що їх експлуатують при високій температурі під тиском.

Хром нікель марганцева сталь є відносно недорогим замінником хром-нікелевих сталей. Такі сталі містять у своєму складі від 1 до 5 % нікелю та до 15 % хрому. Дорогоцінний нікель в таких сталях частково замінений на марганець та азот. Така сталь оптимально легована хромом, нікелем, марганцем, міддю й азотом. Хімічний склад забезпечує аустенітну структуру та високу міцність і прекрасну здатність до деформування. Завдяки новітнім технологіям виготовлення та збалансованому хімічному складу, аустенітна сталь, як приклад, марки 12Х15Г9НД (AISI 201) має високу корозійну стійкість і не поступається за цим показником маркам з високим складом нікелю.

ПриміткиРедагувати

  1. Термінологічний словник. Випуск 2(1). Інститут української мови. НАН України. 2013
  2. Madden, 2003, p. 160.
  3. A Proposal to Establish the Shipwreck Half Moon as a State Underwater Archaeological Preserve. Bureau of Archaeological Research, Division of Historical Resources, Florida Department of State. May 2000. 
  4. ThyssenKrupp Nirosta: History. Архів оригіналу за 2013-07-07. Процитовано 2007-08-13. 

ДжерелаРедагувати

  • Хільчеський В. В., Кондратюк С. Є., Степаненко В. О., Лопатько К. Г. Матеріалознавство і технологія конструкційних матеріалів: Навч. посібник. — К.: Либідь, 2002. — 328 c. — ISBN 966-06-0247-2.
  • Технологія конструкційних матеріалів: Підручник / М. А. Сологуб, І. О. Рожнецький, О. І. Некоз та ін.; За ред. М. А. Сологуба. — 2-ге вид., перероб. і допов. — К.: Вища школа, 2002. — 374 с. — ISBN 966-642-033-3.
  • Попович В. В. Технологія конструкційних матеріалів і матеріалознавство: [підручник для студ. вищ. навч. закл.] / В. В. Попович, В. В. Попович. — Львів: Світ, 2006. — 624 с. — ISBN 966-603-452-2.

ПосиланняРедагувати