Дополнение к статье "Радикальна ознака Кошi"
t ⊢ a : N ↦ R ∧ ∀ n ∈ N ( a n > 0 ) ∧ ∃ d ∈ ( 0 , 1 ) ∃ N ∈ N ∀ n ∈ N ∧ n > N ( a n n < d ) → ( ∑ i = 0 ∞ a i ) ∈ R {\displaystyle ~t\vdash \ \mathrm {a} :\mathbb {N} \mapsto \mathbb {R} \ \ \land \ \ \forall _{n\ \in \ \mathbb {N} }\ (a_{n}>0)\ \ \land \ \ \exists _{d\ \in \ (0,1)}\ \exists _{N\ \in \ \mathbb {N} }\ \forall _{n\ \in \ \mathbb {N} \ \land \ n\ >\ N}\ ({\sqrt[{n}]{a_{n}}}<d)\to (\sum _{i=0}^{\infty }a_{i})\in \mathbb {R} }
t ⊢ a : N ↦ R ∧ ∀ n ∈ N ( a n > 0 ) ∧ lim n → ∞ a n n ∈ ( 0 , 1 ) → ( ∑ i = 0 ∞ a i ) ∈ R {\displaystyle ~t\vdash \ \mathrm {a} :\mathbb {N} \mapsto \mathbb {R} \quad \land \quad \forall _{n\ \in \ \mathbb {N} }\ (a_{n}>0)\quad \land \quad \lim _{n\to \infty }{\sqrt[{n}]{a_{n}}}\in (0,1)\quad \to \quad (\sum _{i=0}^{\infty }a_{i})\in \mathbb {R} }
t ⊢ a : N ↦ R ∧ ∀ n ∈ N ( a n > 0 ) ∧ lim n → ∞ a n n ∈ ( 1 , ∞ ) → lim n → ∞ ( ∑ i = 0 n a i ) = ∞ {\displaystyle ~t\vdash \ \mathrm {a} :\mathbb {N} \mapsto \mathbb {R} \quad \land \quad \forall _{n\ \in \ \mathbb {N} }\ (a_{n}>0)\quad \land \quad \lim _{n\to \infty }{\sqrt[{n}]{a_{n}}}\in (1,\infty )\quad \to \quad \lim _{n\to \infty }(\sum _{i=0}^{n}a_{i})=\infty }
Галактион 20:47, 15 серпня 2009 (UTC)Відповісти