Відкрити головне меню
Комета C/2006 W3 (Chistensen). Жовтим показано поширення пилу, червоним — газовиділення CO й CO2 в каналі 4.6 мкм довжини хвилі

Кометний лід — сукупність замерзлих газів, які разом з пилом формують ядро комети. Наші сучасні знання про склад кометного льоду базуються в основному на досить численних дослідженнях коми, яка розвивається внаслідок сублімації льоду з наближенням комети до Сонця. Прямі дослідження поверхні ядра космічними апаратами обмежені через дуже малу їхню кількість і різні методи досліджень при цьому. Отже, вивчення різноманітності комет, яке потребує статистичного підходу, може бути досягнуто тільки програмами дистанційних спостережень[1].

Під час спостережень коми фіксують дочірні та батьківські молекули. Дочірні молекули утворені шляхом фотодисоціації батьківських, а останні безпосередньо виділяються з ядра. Найбільш поширеною батьківською молекулою є H2O, продуктами дисоціації якої є H + OH у 99 % випадках і H2 + O у 1 % випадків[2]. Іншими батьківськими молекулами є CO, CO2, CH4, NH3, HCN, H2CO, H2S, а дочірніми — CN, CS, CO (яка, як видається, може бути й батьківською й дочірньою). Дочірні молекули й радикали в основному виявляються у видимому й ультрафіолетовому частинах спектру, а батьківські молекули краще виявляються за допомогою ІЧ й міліметрової спектроскопії[3].

Що стосується співвідношення речовин у ядрі, то шляхом моделювання знайдено співвідношення за масою 1:1:1 для силікатної речовини, органіки й льоду[4]. Виміряне відношення викинутого пилу до газу для комети Чурюмова-Герасименко, яка вважається «запиленою», становить приблизно 4:1 за масою[5]. Для комети Галлея під час зближення з Джотто відношення маси пилу до газу має становити 2:1[6], як і для багатьох комет[7].

Склад кометного льодуРедагувати

Безсумнівно, основним компонентом кометного льоду є водяний лід. Спостереження коми комети Галлея за допомогою космічних апаратів, доповнені наземними спостереженнями дали змогу отримати склад кометного льоду: 80 % — H2O, 10 % — CO, 3.5 % — CO2 за кількістю молекул. Решта — це льоди CH4, NH3, H2CO, CH3OH та інших сполук вуглецю й азоту. Важлива деталь — це докази того, що деякі з молекул води, ймовірно, присутні в хімічному поєднанні з кам'янистими й вуглецевими матеріалами, як гідроксильна вода. Крім того, представляється можливим, що пропорції різних льодових матеріалів присутні в клатратах, де один матеріал укладений у кристалічну структуру іншого. Зокрема, досить відкрита кристалічна структура водяного льоду може легко обплітати молекули інших льодових речовин, таких як CO[8][9][7].

Аналіз водяної пари 11 комет, як коротко так і довгоперіодичних, показав, що ізотопний склад помітно відрізняється від складу земної води. На Землі на кожні 10 тисяч молекул води доводиться три атоми дейтерію, а на кометі замерзлої «важкої води» приблизно втричі більше. Лише водяна пара комети Хартлі-2 містить подібну із земними океанами кількість дейтерію[10]. Питання ізотопного складу кометного водяного льоду привертає увагу зважаючи на теорію про кометне походження складних органічних сполук, з яких згодом сформувалося життя на Землі[11].

Активність віддалених кометРедагувати

На відстанях приблизно 3 а.о., за температур поверхні ≈160–170 K, сублімація водяного льоду починає ставати значущою для ядра комети[12] і є панівною на ближчих відстанях. Однак активність комет спостерігається на значно більших відстанях. Сублімацією льодових зерен з гала навколо ядра, можна пояснити типовий розвиток віддаленої активності комет. Також це може бути основним джерелом емісії OH, HCN, CH3OH, H2CO, та H2S комети Хейла-Боппа на відстанях 3–6 а.о. Виробництво HCN і CO2 істотно поступається виробництву CO для далеких комет. Спостережні вузькі профілі ліній CO вказують на ядерне походження цього газу за межами ≈4 а.о[13]. Оскільки температура сублімації льоду CO складає 24 K, вона можлива на відстанях понад 5 а.о.[14].

Однак модельні дослідження вказують на те, що кращим джерелом віддаленої активності комет є аморфний водяний лід, який укритий тонкою пористою пиловою мантією із захопленими у невеликій кількості CO й CO2. На відстанях ≈4–7 а.о., поблизу поверхні ядра комети аморфний водяний лід екзотермічно (з вивільненням енергії) переходить у кристалічний лід і вивільняє захоплені гази й пил[13]. Кометний лід первинно цілком аморфний, бо динамічна еволюція почалася далеко від Сонця й еволюція в кристалічний лід починається у внутрішніх зонах Сонячної системи. Додатково треба зазначити, що у випадку, якщо вісь обертання кометного ядра перпендикулярна до площини екліптики, то обидва механізми активності (фазовий перехід та сублімація CO) максимізуються[15].

Ще один процес відбувається в аморфному льоді, який спостерігається починаючи від ≈37 К і триває, поки не починається фазовий перехід зі 120 К. Мова йде про відпал аморфного льоду. Активність динамічно нових комет на відстанях, що перевищують ≈11 а.о. можна пояснити тільки відпалом аморфного льоду, а за активність динамічно нових комет на відстанях ≈7–11 а.о., ймовірно, відповідають і відпал і аморфно-кристалічний фазовий перехід водяного льоду, залежно від альбедо ядра, швидкості обертання й теплових параметрів. Під час відпалу молекули води перевпорядковуються, щоб знайти більш вигідні конфігурації нижчої енергії, і в процесі, пористість зменшується, а зайві молекули вичавлюються. Енергія активації відпалу <10 кДж моль-1, а для фазового переходу 44±2 кДж моль-1[16]. Найбільша відстань, на якій спостерігалося виділення монооксиду вуглецю — це 14 а.о., з ядра комети Хейла-Боппа[17].

Див. такожРедагувати

ПосиланняРедагувати

  1. Gargaud et.al., 2011, с. 334
  2. Crovisier, J. The photodissociation of water in cometary atmospheres // Astronomy and Astrophysics. — 1989. — Вип. 213. — № 1–2. — С. 459–464.
  3. Gargaud et.al., 2011, с. 409
  4. Li A., Greenberg J.M. A comet dust model for the beta Pictoris disk // Astronomy and Astrophysics. — 1998. — Вип. 331. — № 1. — С. 291–313.
  5. Pätzold M., et al. A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field // Nature. — 2016. — Вип. 530. — С. 63–65. — DOI:10.1038/nature16535.
  6. McDonnell J.A.M., Lamy P.L., Pankiewicz G.S. Physical properties of cometary dust // International Astronomical Union Colloquium. — 1991. — Вип. 116. — № 2. — С. 1043–1073.
  7. а б Gehrels et.al., 1994, с. 617
  8. Jones B.W. Discovering the Solar System. — John Wiley & Sons, 2007. — С. 105. — ISBN 047051079X.
  9. Greenberg J.M. The Cosmic Dust Connection. — Springer Science & Business Media, 2012. — С. 421. — ISBN 978-94-010-6384-5.
  10. Water On Rosetta's Comet Different To Water On Earth | IFLScience
  11. K. Altwegg, H. Balsiger, A. Bar-Nun, et al. Prebiotic chemicals - amino acid and phosphorus - in the coma of comet 67P/Churyumov-Gerasimenko // Science Advances. — 2016. — Вип. 2. — № 5. — DOI:10.1126/sciadv.1600285.
  12. Gehrels et.al., 1994, с. 611
  13. а б Womack M., Sarid G., Wierzchos K. CO and Other Volatiles in Distantly Active Comets // Astronomical Society of the Pacific. — 2017. — Вип. 129. — № 973. — С. 1–20.
  14. Wickramasinghe N.C. (ed.). Vindication of Cosmic Biology: Tribute to Sir Fred Hoyle (1915–2001). — World Scientific, 2015. — С. 402. — ISBN 981467527X.
  15. Coradini, A.; Capaccioni, F.; Capria, M. T.; De Sanctis, M. C.; Espianasse, S.; Orosei, R.; Salomone, M.; Federico, C. Transition Elements between Comets and Asteroids // Icarus. — 1997. — Вип. 129. — № 2. — С. 317–336. — DOI:10.1006/icar.1997.5769.
  16. Meech, K. J.; Pittichová, J.; Bar-Nun, A.; Notesco, G.; Laufer, D.; Hainaut, O. R.; Lowry, S.C.; Yeomans, D.K.; Pitts, M. Activity of comets at large heliocentric distances pre-perihelion // Icarus. — 2009. — Вип. 201. — С. 719–739. — DOI:10.1016/j.icarus.2008.12.045.
  17. Gargaud et.al., 2011, с. 333

ДжерелаРедагувати