Гіпотеза Ейлера стверджує, що для будь-якого натурального числа жодний n-ний степінь натурального числа не можна подати у вигляді суми n-них степенів інших натуральних чисел. Тобто, рівняння:

не мають розв'язків у натуральних числах.

Гіпотеза була сформульована у 1769 Леонардом Ейлером.

У 1966 Л. Ландер (L. J. Lander) і Т. Паркін (T. R. Parkin) знайшли перший контрприклад до гіпотези Ейлера:

275 + 845 + 1105 + 1335 = 1445.

У 1988 Ноам Елкіс (Noam Elkies[en]) знайшов контрприклад для випадку :

26824404 + 153656394 + 187967604 = 206156734.

Пізніше Роджер Фрай (Roger Frye) знайшов найменший контрприклад для :

958004 + 2175194 + 4145604 = 4224814

Див. також

ред.

Джерела

ред.