Центральна проста алгебра

В теорії кілець центральною простою алгеброю над полем K називається асоціативна алгебра A, яка є простою, і для якої центр є рівним K. Особливо важливим є випадок скінченновимірних центральних простих алгебр і скінченна розмірність іноді є частиною означення.

Приклади ред.

  • Комплексні числа C є центральною простою алгеброю над собою але не над полем дійсних чисел R (центром C є усе поле C, а не лише R).
  • Кватерніони H утворюють 4-вимірну центральну просту алгебру над R.
  • Для будь-якого простого кільця його центр є полем і це кільце є центральною простою алгеброю над своїм центром.
  • Кільце квадратних матриць M(n,F) розмірності n над полем F є центральною простою алгеброю над полем F (центром M(n,F) є множина скалярних матриць, яка є ізоморфною полю F). Більш загально кільце квадратних матриць M(n,D) над тілом D є центральною простою алгеброю над центром тіла D.
  • Оскільки кожне тіло є (як просте кільце) є центральною простою алгеброю над своїм центром і кільце квадратних матриць над полем є центральною простою алгеброю над цим полем, то кожна кватерніонна алгебра є центральною простою, оскільки кожна така алгебра є ізоморфною або алгебрі із діленням або кільцю квадратних матриць порядку 2 над полем. Навпаки кожна центральна проста алгебра розмірності 4 є ізоморфною кватерніонній алгебрі.

Класи і група Брауера ред.

Докладніше: Група Брауера

Згідно теореми Веддерберна скінченновимірна проста алгебра A є ізоморфною матричній алгебрі M(n,S) для деякого тіла S. Дві скінченновимірні центральні прості алгебри A ~ M(n,S) і B ~ M(m,T) над полем F називаються подібними (еквівалентними за Брауером), якщо тіла S і T є ізоморфними.

Еквівалентність Брауера можна задати також і в інший спосіб: скінченновимірні центральні прості алгебри A і B над полем F є еквівалентними якщо для деяких натуральних чисел n і m алгебра   є ізоморфною алгебрі  

З означень очевидно, що у кожному класі Брауера міститься рівно одна алгебра з діленням.

На множині класів Брауера можна ввести групову операцію. Для цього використовується така властивість центральних простих алгебр: якщо А — центральна проста алгебра над полем F, а В — проста алгебра, яка містить F у своєму центрі, то тензорний добуток   є простою алгеброю. Якщо також В є центральною простою алгеброю, то і   є центральною простою алгеброю.

Для класів Брауера [A] і [B] тепер можна ввести  . Дана операція є коректно визначена і множина красів Брауера із цією операцією утворює групу. Одержана група називається групою Брауера Br(F) поля F.[1] Вона є завжди комутативною і періодичною..[2]

Властивості ред.

  • Якщо А є центральною простою алгеброю над полем F, то довільний ідеал алгебри   має вид   де I — ідеал алгебри B. Зокрема F-алгебра   буде простою тоді і тільки тоді, коли простою є F-алгебра B.
  • Нехай для скінченновимірної алгебри А над полем F, алгебра Аop побудована на тому самому векторному просторі із тією ж адитивною структурою і множенням на скаляр але із множенням заданим як   Тоді алгебра А є центральною простою тоді і тільки тоді, коли   де n — розмірність А над полем F.
  • Кожен автоморфізм центральної простої алгебри є внутрішнім автоморфізмом (наслідок теореми Сколема — Нетер).
  • Якщо А є скінченновимірною центральною простою алгеброю над полем F і B її простою підалгеброю, то централізатор   алгебри B є теж простою підалгеброю. Окрім того також   і для розмірностей виконується рівність dimF A = dimF B dimF B'.
  • Розмірність центральної простої алгебри як векторного простору над своїм центром є завжди квадратом: квадратний корінь із цієї розмірності називається степенем.[3] Степінь еквівалентної алгебри з діленням називається індексом алгебри [4] Індекс центральної простої алгебри залежить лише від її класу Брауера.[5]
  • Порядком центральної простої алгебри називається порядок її класу у групі Брауера. Порядок алгебри є дільником її індексу,[6] і прості дільники в обох числах є однаковими.[7][8][9]
  • Якщо D є центральною алгеброю з діленням над K і її індекс має розклад у добуток простих чисел
 
тоді D має розклад у тензорний добуток
 
де кожна компонента Di є центральною алгеброю з діленням індексу  , і компоненти є визначені з точністю до ізоморфізму.[10]

Поле розщеплення ред.

Поле E називається полем розщеплення для центральної простої алгебри A над K якщо AE є ізоморфною кільцю матриць над E. Для кожної скінченновимірної центральної простої алгебри існує поле розщеплення. У випадку якщо A є алгеброю з діленням, її максимальне підполе є полем розщеплення. У загальному випадку існує поле розщеплення, яке є сепарабельним розширення поля K степеня рівного індексу A і це поле розщеплення є ізоморфним підполю A.[11][12] Наприклад, поле C розщеплює алгебру кватерніонів H над R:

 

За допомогою поля розщеплення можна ввести поняття редукованої норми і редукованого сліду центральної простої алгебри A.[13] Розглянувши вкладення A у кільце матриць над полем розщеплення, редуковані норма і слід є рівними визначнику і сліду відповідних елементів. Наприклад для алгебри кватерніонів H, при розщепленні вище для елемента t + x i + y j + z k редукована норма є рівною t2 + x2 + y2 + z2, а редукований слід 2t.

Редукована норма є мультиплікативною, а редукований слід адитивним. Елемент a A є оборотним якщо і тільки якщо його редукована норма є ненульовою і тому центральна проста алгебра є алгеброю з діленням якщо і тільки якщо редукована норма є ненульовою для всіх ненульовим елементів.[14]

Примітки ред.

  1. Lorenz (2008) p.159
  2. Lorenz (2008) p.194
  3. Gille & Szamuely (2006) p.21
  4. Lorenz (2008) p.163
  5. Gille & Szamuely (2006) p.100
  6. Jacobson (1996) p.60
  7. Jacobson (1996) p.61
  8. Gille & Szamuely (2006) p.104
  9. Cohn, Paul M. (2003). Further Algebra і Applications. Springer-Verlag. с. 208. ISBN 1852336676.
  10. Gille & Szamuely (2006) p.105
  11. Jacobson (1996) pp.27-28
  12. Gille & Szamuely (2006) p.101
  13. Gille & Szamuely (2006) pp.37-38
  14. Gille & Szamuely (2006) p.38

Див. також ред.

Література ред.