́O (4; 3,8) A (0; 0) B (5,090; 4,0) Маса: 68
A O = 4 2 + 3 , 8 2 = 16 + 14 , 44 ≈ 2 × 10 1 + 14 = 2 × 10 1 + 1 , 4 × 10 1 = 3 , 4 × 10 1 ≈ 3 × 10 1 = 2 10 ≈ 2 × 3 , 2 = 6 , 4 ≈ 6 {\displaystyle AO={\sqrt {4^{2}+3,8^{2}}}={\sqrt {16+14,44}}\approx {\sqrt {2\times 10^{1}+14}}={\sqrt {2\times 10^{1}+1,4\times 10^{1}}}={\sqrt {3,4\times 10^{1}}}\approx {\sqrt {3\times 10^{1}}}=2{\sqrt {10}}\approx 2\times 3,2=6,4\approx 6} B O = 5 , 090 2 + 4 , 0 2 = 25 , 9081 + 16 ≈ 25 , 91 + 16 = 41 , 91 ≈ 42 ≈ 6 , 5 {\displaystyle BO={\sqrt {5,090^{2}+4,0^{2}}}={\sqrt {25,9081+16}}\approx {\sqrt {25,91+16}}={\sqrt {41,91}}\approx {\sqrt {42}}\approx 6,5} A B = ( 4 − 5 , 090 ) 2 + ( 3 , 8 − 4 , 0 ) 2 = ( − 1 , 090 ) 2 + ( − 0 , 2 ) 2 ≈ ( − 1 ) 2 + ( − 0 , 2 ) 2 = 1 + 0 , 04 = 1 , 04 ≈ 1 = 1 {\displaystyle AB={\sqrt {(4-5,090)^{2}+(3,8-4,0)^{2}}}={\sqrt {(-1,090)^{2}+(-0,2)^{2}}}\approx {\sqrt {(-1)^{2}+(-0,2)^{2}}}={\sqrt {1+0,04}}={\sqrt {1,04}}\approx {\sqrt {1}}=1} p = 6 + 6 , 5 + 1 = 12 , 5 + 1 ≈ 13 + 1 = 14 {\displaystyle p=6+6,5+1=12,5+1\approx 13+1=14} S = 14 2 ( 14 2 − 6 ) ( 14 2 − 6 , 5 ) ( 14 2 − 1 ) = 7 ( 7 − 6 ) ( 7 − 6 , 5 ) ( 7 − 1 ) = 7 × 1 × 0 , 5 × 6 ≈ 7 × 1 × 1 × 6 = 7 × 6 = 42 ≈ 4 × 10 1 = 2 10 ≈ 2 × 3 , 2 = 6 , 4 = 6 {\displaystyle S={\sqrt {{\frac {14}{2}}({\frac {14}{2}}-6)({\frac {14}{2}}-6,5)({\frac {14}{2}}-1)}}={\sqrt {7(7-6)(7-6,5)(7-1)}}={\sqrt {7\times 1\times 0,5\times 6}}\approx {\sqrt {7\times 1\times 1\times 6}}={\sqrt {7\times 6}}={\sqrt {42}}\approx {\sqrt {4\times 10^{1}}}=2{\sqrt {10}}\approx 2\times 3,2=6,4=6} M = 68 × 6 = 408 ≈ 4 × 10 2 {\displaystyle M=68\times 6=408\approx 4\times 10^{2}} R = 4 × 10 2 6 2 + 6 , 5 2 = 4 × 10 2 36 + 42 , 25 ≈ 4 × 10 2 4 × 10 1 + 42 = 4 × 10 2 3 × 10 1 + 4 , 2 × 10 1 = 4 × 10 2 7 , 2 × 10 1 ≈ 4 × 10 2 7 × 10 1 ≈ 0 , 6 × 10 1 = 6 {\displaystyle R={\frac {4\times 10^{2}}{6^{2}+6,5^{2}}}={\frac {4\times 10^{2}}{36+42,25}}\approx {\frac {4\times 10^{2}}{4\times 10^{1}+42}}={\frac {4\times 10^{2}}{3\times 10^{1}+4,2\times 10^{1}}}={\frac {4\times 10^{2}}{7,2\times 10^{1}}}\approx {\frac {4\times 10^{2}}{7\times 10^{1}}}\approx 0,6\times 10^{1}=6} M ( 1 ) = 6 × 4 × 10 1 = 24 × 10 1 ≈ 2 × 10 1 × 10 1 = 2 × 10 2 {\displaystyle M(1)=6\times 4\times 10^{1}=24\times 10^{1}\approx 2\times 10^{1}\times 10^{1}=2\times 10^{2}} M ( 2 ) = 6 × 42 = 252 ≈ 3 × 10 2 {\displaystyle M(2)=6\times 42=252\approx 3\times 10^{2}} 2 × 10 2 3 × 10 2 = 2 3 ≈ 0 , 7 {\displaystyle {\frac {2\times 10^{2}}{3\times 10^{2}}}={\frac {2}{3}}\approx 0,7}