Трикутник Серпінського — фрактал, один із двовимірних аналогів множини Кантора. Його математичний опис був запропонований польським математиком Вацлавом Серпінським в 1915 році[1]. Цей трикутник є одним з найбільш ранніх прикладів фракталів, відомих з середньовіччя.

Трикутник Серпінського
Зображення
Відео
Названо на честь Вацлав Серпінський
Дата відкриття (винаходу) 1915
3D модель
Підтримується Вікіпроєктом Вікіпедія:Проєкт:Математика
CMNS: Трикутник Серпінського у Вікісховищі

Даний фрактал відносять до фракталів, які отримують поетапним вилученням частин генератора, тобто до геометричних. Також відомий як «серветка» або «решітка» Серпінського.

Існує кілька способів побудови цього фракталу.

Побудова

ред.
 
Побудова трикутника Серпінського
 
Мозаїчна підлога у стилі косматеско у Кафедральному соборі Св. Марії в Ананьї

Існує дуже багато способів побудови трикутника Серпінського, їх можна поділити на такі типи:

  • Геометричні методи;
  • Метод ігор;
  • Трикутник Серпінського як результат перетворення трикутника Паскаля;
  • Аналітичне задання фракталів з допомогою комплексних чисел;
  • Задання фракталів за допомогою систем ітерованих функцій;
  • Побудова через кола, круги та ін.;

Найпростішим способом побудови є такий: Береться рівносторонній трикутник. На першому кроці видаляється трикутник з вершинами в середині сторін початкового трикутника. На другому кроці аналогічні трикутники із трьох менших трикутників, які залишилися після першого кроку, і т. д.[2] Після нескінченного повторення цієї процедури, від суцільного трикутника залишається підмножина — трикутник Серпінського.

Властивості

ред.

Цікаві факти

ред.
 
Римська мозаїка 3 — 4 століття в античному музеї міста Арль, Франція
  • Якщо в трикутнику Паскаля всі непарні числа пофарбувати в чорний колір, а парні — в білий, то утворюється трикутник Серпінського.
  • Утворення, схожі на трикутник Серпінського, виникає в грі Життя з довгої вертикальної лінії.
  • Трикутник Серпінського — це множина тих точок вихідного трикутника що не належать жодному з центральних трикутників довільного рангу, тобто нескінченність, що складається з тих точок, що не відкидаються ні на якому з цих етапів.
  • Зображення трикутника Серпінського у 1919 р. стали мотивом кількох графічних творів відомого українського графіка Георгія Нарбута
  • Варіації на тему трикутника Серпінського використані в оздобленні інтер'єру синагоги Бен-Езра, Каїр, Єгипет
  • На основі трикутника Серпінського можуть бути виготовлені багатодіапазонні фрактальні антени.[2][3]
  • Чотири перші ітерації фрактальних трикутників Серпінського присутні в орнаментах геометричної мозаїки стиля косматеско в середньовічних соборах Італії (з XII століття)[4][5][6], арабських та перських інтер'єрах[4].

Див. також

ред.

Примітки

ред.
  1. W. Sierpinski, Sur une courbe dont tout point est un point de ramification.//Comptes rendus hebdomadaires des séances de l'Académie des sciences. — Paris. — Tome 160, Janvier — Juin 1915. — Pp. 302—305. — [1]
  2. а б Слюсар В. И. Фрактальные антенны. // Радиоаматор. — 2002. — № 9. — С. 54 -56., Конструктор. — 2002. — № 8. — С. 6 — 8. [2]
  3. Вишневский В. М., Ляхов А. И., Портной С. Л., Шахнович И. В. Широкополосные беспроводные сети передачи информации. — М.: Техносфера. — 2005.- C. 498—569. [3]
  4. а б The grammar of ornament. Day and Son, London. — 1856. [4]
  5. Conversano Elisa, Tedeschini Lalli Laura. Sierpinsky triangles in stone, on medieval floors in Rome.// Aplimat — Journal of Applied Mathematics. Volume 4 (2011), Number 4. — P. 113—122. — [5]
  6. Paola Brunori, Paola Magrone, and Laura Tedeschini Lalli. Imperial Porphiry and Golden Leaf: Sierpinski Triangle in a Medieval Roman Cloister.//ICGG 2018 — Proceedings of the 18th International Conference on Geometry and Graphics. — Pp. 595—609. -[6]

Література

ред.