Струмінь (математика)

Струмінь відображення на многовиді  — це операція, що співставляє кожній точці із деякий поліном (обрізаний поліном Тейлора в точці ). З точки зору теорії струменів ці поліноми розглядаються не як поліноміальні функції, а як абстрактні алгебричні багаточлени, що залежать від точки многовиду.

Два відображення мають однаковий -струмінь у точці якщо та якщо у будь-якій локальній карті у окілі точки розклади у ряд Тейлора функцій та співпадають до порядку включно. Клас еквівалентності, який визначається відображенням , позначається Сукупність усіх -струменів утворює многовид струменів , де координата на й довільна локальна карта на визначають деяку систему координат на

Многовидом 1-струменів функцій на називається многовид із контактною 1-формою (де - форма дії на фазовому просторі a - координата). Наприклад, якщо є окружністю, то многовид є дифеоморфним повноторію (внутрішності двохвимірного тору). На цьому многовиді визначені координати ().Лежандровим підмноговидом є підмноговид, на якому контактна 1-форма перетворюється на нуль. Наприклад, будь-якій функції відповідає лежандровий переріз розшарування , задане формулами

Многовид залежить лише від функції а не від вибору локальної карти; ця формула зіставляє точці кодотичний вектор та число Вкладений лежандровий підмноговид є квазіфункцією на якщо він належить компоненті зв'язності нульового перерізу () у просторі вкладених лежандрових підмноговидів многовиду 1-струменів функцій на Проекція квазіфункції з простору 1-струменів у фазовий простір (при натуральному відображенні забування значення функції) є точним лагранжевим підмноговидом у Цей підмноговид може виявитися не вкладеним, а лише зануреним у (самопересічним). Усілякий точний лагренжевий підмноговид , занурений до отримується цим способом з деякого лежандрового многовиду (який є визначеним із точністю до зсувів осі якщо є зв'язним). Однак, може бути лише зануреним (самопересічним у (2n+1)-вимірному многовиді струменів ).

Теорема ЧекановаРедагувати

Нехай   -  -квазіфункція. Тоді число точок самоперетину проекції   у   загального положення не менше, ніж  

Квазіфункція на окружності   має не менше двох квазікритичних точок. Проекції усіх лежандрових вузлів із компоненти, яка містить   у   мають принаймні три точки самоперетину із врахуванням кратності. Достатньо у процесі гомотопії припустити один самоперетин, і можна отримати лежандровий многовид   гомотопний у класі лежандрових вкладень многовиду   у якого одна точка самоперетину проекції у   [1]


Струмені на еклідовому просторіРедагувати

Аналітичне означенняРедагувати

Струмені і простори струменів можуть бути означені, використовуючи принципи математичного аналізу. Означення можна узагальнити на гладкі відображення між банаховими просторами, аналітичними функціями у дійсній або комплексній області, на  -адичний аналіз тощо.



ЛітератураРедагувати

  • Виноградов А., Красильщик И., Лычагин В. Введение в геометрию нелинейных дифференциальных уравнений. — М : Наука, 1986.
  • Sardanashvily, G.[en], Fibre bundles, jet manifolds and Lagrangian theory. Lectures for theoreticians, arXiv: 0908.1886
  1. П. Е. Пушкарь, Обобщение теоремы Чеканова. Диаметры иммерсированных многообразий и волновых фронтов, Тр. МИАН, 1998, том 221, 289–304.