Відмінності між версіями «Гетероструктури»

Перевів статтю з рос.мови на українську
(Перевів статтю з рос.мови на українську)
{{без джерел|дата=Джойс Б. А., Хекингботтом Р., Менх У. и др. Молекулярно-лучевая эпитаксия и гетероструктуры. — Под ред. Л. Ченга, К. Плога. Пер. с англ. под ред. Ж. И. Алферова, Ю. В. Шмарцева. — Москва: Мир, 1989. — 582 с. — ISBN 5-03-000737-7.
{{без джерел|дата=травень 2018}}
 
Алферов Ж.И. История и будущее полупроводниковых гетероструктур // ФТП. — 1998. — Т. 32, № 1. — С. 3. — ISSN 0015-3222.
 
Лебедев А. И. Физика полупроводниковых приборов. — Физматлит Москва, 2008. — 488 с. — ISBN 978-5-9221-0995-6.}}
[[Файл:Heterojunction types.png|thumb|Три типи гетероструктур в залежності від взаємного розташування зон]]
Гетероструктура - термін у фізиці напівпровідників, що позначає вирощену на підкладці шарувату структуру з різних напівпровідників, в загальному випадку відрізняються шириною забороненої зони. Між двома різними матеріалами формується так званий гетероперехід, в якому можлива підвищена концентрація носіїв, і звідси - формування виродженого двовимірного електронного газу. На відміну від гомоструктур володіє більшою свободою вибору в конструюванні потрібного потенційного профілю зони провідності і валентної зони. Гетероструктури дають можливість управління фундаментальними параметрами в напівпровідникових кристалах і приладах: шириною забороненої зони, ефективними масами носіїв і їх рухливості, показником заломлення, електронним енергетичним спектром і т. д.
'''Гетеростуктури''' — [[напівпровідник]]ові структури, що складаються з шарів різнорідних напівпровідників із [[гетероперехід|гетеропереходами]] між ними.
 
Для вирощування гетероструктур використовують багато різних методів, серед яких можна виділити два основних:
 
* Молекулярно-променева епітаксії,
* Осадження з газоподібної фази (MOCVD).
 
Перший метод дозволяє вирощувати гетероструктури з високою точністю. Другий же не має високої точності, але в порівнянні з першим методом володіє вищою продуктивністю.
 
За розвиток напівпровідникових гетероструктур для високошвидкісної оптоелектроніки Жорес Алфьоров (Росія) і Герберт Кремер (США) були удостоєні Нобелівської премії у 2000 році.
 
В рамках програми розвитку нанотехнологій в Росії ведеться активний розвиток виробництв, пов'язаних з гетероструктурами, а саме виробництво сонячних батарей і світлодіодів.
 
Одним із типів гетероструктур є [[квантова яма]].
Гетероструктури використовуються в [[напівпровідниковий пристрій|напівпровідникових пристроях]]: [[транзистор]]ах, [[резонансний тунельний діод|резонансних тунельних діодах]] тощо.
 
= Історія =
Вперше на можливість використання властивостей контакту двох різних напівпровідників для підвищення ефективності інжекції в біполярних транзисторах вказував Шоклі в 1948 році.
 
У 1957 році Герберт Кремер у своїй роботі припустив, що гетеропереходи можуть мати більш високу ефективність інжекції в порівнянні з гомопереходамі.
 
Якісна модель формування енергетичної діаграми гетероперехода була розвинена Р. Л. Андерсоном в 1960 році, їм також було досліджено перший епітаксіальний монокристаллический гетероперехід Ge-GaAs з співпадаючими постійними кристалічної решітки.
 
Кількома роками пізніше незалежно Ж. І. Алферовим і Г. Кремером була сформульована концепція лазерів на основі подвійних гетероструктур (ДГС).
 
Алфьоров відзначав можливість досягнення високої щільності інжектованих носіїв і инверсной заселеності для отримання вимушеного випромінювання в даних структурах. Він показав, що щільність інжектованих носіїв може на кілька порядків перевищувати щільність носіїв в широкозонному емітер (ефект "суперінжекціі"), а завдяки потенційним бар'єрів на кордоні напівпровідників рекомбінація в емітер дорівнює нулю.
 
Найбільш перспективною для отримання гетероструктур була система AlAs-GaAs, так як з'єднання AlAs і GaAs мають близькі значення постійних решіток, а GaAs в свою чергу володіє багатьма необхідними властивостями, такими як малі ефективні маси носіїв, висока рухливість електронів, велика ширина забороненої зони, ефективна випромінювальна рекомбінація і різкий край оптичного поглинання внаслідок прямозонних структури.
 
Розробка модифікації методу рідиннофазної епітаксії (ЖФЕ), придатної для зростання гетероструктур, привела до створення першої граткову-узгодженої AlGaAs-гетероструктури. Були створені більшість найбільш важливих приладів, в яких використовуються основні переваги гетероструктур:
 
* низькопорогових ДГС лазери при кімнатній температурі,
* високоефективні світлодіоди на одиночній і подвійний гетероструктуре,
* сонячні елементи на гетероструктурах,
* біполярні транзистори на гетероструктурах,
* тиристорні p-n-p-n-перемикачі на гетероструктурах.
 
Роботи Ж. І. Алфьорова та Г. Кремер в області дослідження гетеропереходів були відзначені присудженням їм Нобелівської премії з фізики у 2000 році.
 
В даний час гетеропереходи знаходять широке застосування при створенні високочастотних транзисторів і оптоелектронних приладів. На базі гетероструктур створюються швидкодіючі оптота мікроелектронні пристрої: лазерні діоди для систем передачі інформації в оптоволоконних мережах; гетероструктурних світлодіоди і біполярні транзистори; малошумливі транзистори з високою рухливістю електронів (ВПЕТ), що застосовуються в високочастотних пристроях, в тому числі в системах супутникового телебачення; сонячні елементи з гетероструктурами, широко використовуються для космічних і земних програм.
 
== Див. також ==
Анонімний користувач