Відмінності між версіями «Формула Лейбніца для визначників»

м
нема опису редагування
м
 
Пряме обчислення формули Лейбніца з означення потребує <math>\Omega(n! \cdot n)</math> дій, тобто кількість операцій асимптотично пропорційна до ''n'' [[факторіал]]&nbsp;— бо ''n''! це число перестановок порядку ''n''. Це непрактично складно для великих ''n''. Натомість, визначник можна обчислити за O(''n''<sup>3</sup>) дій, використовуючи [[LU розклад матриці]] <math>A = LU</math> (зазвичай через [[метод Гауса]] або подібний), в цьому випадку <math>\det A = (\det L) (\det U)</math> а визначники трикутних матриць ''L'' і ''U'' є просто добутками їх діагональних елементів. (Однак, у практичному застосуванні чисельної лінійної алгебри, явний розрахунок визначника необхідний рідко.)
 
{{math-stub}}
 
[[Категорія:Визначники]]
131 430

редагувань