Композити: відмінності між версіями

[неперевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
DixonDBot (обговорення | внесок)
м Додавання/виправлення дати для: Шаблон:Стиль
м суміш розкладок за допомогою AWB
Рядок 32:
Прикладом композитів першого типу може бути А1, зміцнений високодисперсними частинками А12О3. Ці матеріали зберігають свою міцність до високих температур (~ 0,8 Т<sub>пл</sub>), стійкі проти повзучості. Такі композити, як правило, одержують методами порошкової металургії. Вони знаходять застосування як жароміцні і жаростійкі матеріали.
 
До матеріалів другої групи відносяться широко розповсюдже¬ні тверді сплави, виготовлені методом порошкової металургії (WC-Со, ТіС-Со та ін.). Сплави цього типу застосовують для різального інструменту, матриць, пуансонів, лопаток турбін.
 
В композитах, армованих волокнами, матриця є середовищем, що передає навантаження волокнам і розподіляє його між ними. Отже, міцність таких КМ при незмінній кількості зміцнювача залежить від міцності волокон, сили зчеплення між волокнами і матри¬цею і від опору матриці зсуву. Як приклад приведемо композит «Алор» (алюмінієва матриця + органічне волокно). Якщо в А1 σв ~ 50 МПа, то в такому КМ σв ~ 500–600 МПа, а швидкість росту тріщини, у порівнянні з А1, знижується більш ніж у 20 разів. Це зумовлено гальмуванням розвитку тріщини волокнами.
Рядок 58:
Вугле- і склопластики є перспективними матеріалами для використання в будівництві у вигляді профілів (балок, швелерів, двотаврів і&nbsp;т.&nbsp;д.). Вуглепластик застосовують для виготовлення деталей автомобіля: шатунів, ресор, карданних валів, при цьому вироби стають дуже легкими. Компанія «Форд» більше 1000 видів деталей автомобіля виготовляє з КМ.
 
Керамічні матеріали одержують спіканням при 1500–2500 °С оксидів, силіцидів або сполук металу з вуглецем, азотом, бором (карбідів, нітридів, боридів). Серед оксидів найчастіше використовують корунд (Аl<sub>2</sub>О<sub>3</sub>), з карбідів&nbsp;— карборунд (SiСSiC), з нітридів&nbsp;— Si<sub>3</sub>N<sub>4</sub>. Усі ці сполуки мають високу температуру плавлення (від 1800 до 2700 °С) і високу твердість і міцність (при 1000–1200 °С близько 500 МПа).
 
Керамічні матеріали відрізняються високою тепло-, жаро-, ерозійною стійкістю, тому вони дуже привабливі для виготовлення відповідальних важко навантажених виробів (високотемпературні підшипники, лопатки газотурбінних двигунів, деталі двигунів внутрішнього згоряння, носові обтікачі ракет тощо). Правда, вони мають невисоку в'язкість руйнування. Однак добавка більш в'язкого наповнювача робить можливим їх промислове використання. Так, використання в двигунах внутрішнього згоряння КМ, який складається з 70% Аl<sub>2</sub>О<sub>3</sub> і 30% Сr, дозволило підвищити робочу температуру на 50%, що знизило витрати палива на 3О %.
 
Для лопаток газових турбін застосовують матеріали на основі карбідів і нітридів Si, Ті, Mg. Такі лопатки здатні витримувати температуру 1600 °С.
 
У зв'язку з невисокою в'язкістю руйнування застосування керамічних КМ сьогодні ще обмежене. Однак з міркувань дешевих сировинних ресурсів, які потрібні для виготовлення таких КМ, і можливості їх використання у високотемпературних конструкціях, де вони не мають конкурентів, розвиток цього напряму безумовно є перспективним.