Теорема Борсука — Уляма: відмінності між версіями

нема опису редагування
[неперевірена версія][неперевірена версія]
м (дoдана Категорія:Теореми з допомогою HotCat)
Немає опису редагування
'''Теорема Бо́рсука - У́лама''' стверджує, що
якщо задана [[неперервна функція|неперервна]] [[функція (математика)|функція]] <math>f:S^n \to \mathbb{R}^n</math>, де <math>S^n</math> - [[сфера]] в <math>(n+1)</math>-мірному [[Лінійний простір|лінійному просторі]], то існують такі дві діаметрально протилежні точки <math>a, b \in S</math>, що <math>f(a)=f(b)</math>.
З теореми для випадку ''n = 2'' зокрема випливає, що у будь-який момент часу на поверхні [[Земля|Землі]] завжди можна знайти дві діаметрально протилежні точки з однаковими [[температура|температурою]] повітря і [[атмосферний тиск|атмосферним тиском]]. Це припускає, що [[температура|температура]] і [[атмосферний тиск|атмосферний тиск]] безперервно змінюються.
 
Теорема була вперше сформульована [[Станіслав Улам|Станіславом Уламом]], а в [[1933]] році вона була доведена [[Кароль Борсук|Каролем Борсуком]].
Анонімний користувач