Регулятор трансмембранної провідності при муковісцидозі

білок людини

ABCC7, також регулятор трансмембранної проникності за муковісцидозу (англ. cystic fibrosis transmembrane conductance regulator, CRTR) — білок, який кодується геном CFTR, розташованим у людей на довгому плечі 7-ї хромосоми.[5] Довжина поліпептидного ланцюга білка становить 1 480 амінокислот, а молекулярна маса — 168 142[6]. Належить до підродини С АТФ-зв'язувальних касетних транспортерів. Він експресується в апікальних мембранах клітин легень, кишківнику, жовчних проток. Білок CFTR є унікальним членом родини ABC-транспортерів, оскільки він є цАМФ-регульованим хлорним каналом, який відкривається при цАМФ-залежному фосфорилюванні його молекули за участю протеїнкінази А і здійснює не первинно-активний транспорт (як більшість інших представників АВС-транспортерів), а полегшену дифузію іонів хлору[7].

Регулятор трансмембранної провідності при муковісцидозі
Наявні структури
PDBПошук ортологів: PDBe RCSB
Ідентифікатори
Символи CFTR, ABC35, ABCC7, CF, CFTR/MRP, MRP7, TNR-dJ760C5.1, cystic fibrosis transmembrane conductance regulator, CF transmembrane conductance regulator
Зовнішні ІД OMIM: 602421 HomoloGene: 55465 GeneCards: CFTR
шифр КФ 5.6.1.6
Пов'язані генетичні захворювання
муковісцидоз, congenital bilateral aplasia of the vas deferens[1]
Реагує на сполуку
Апігенін, капсаїцин, Фелодипін, Геністейн, ivacaftor, Німодипін, Глібенкламід[2]
Ортологи
Види Людина Миша
Entrez
Ensembl
UniProt
RefSeq (мРНК)
NM_000492
NM_031506
RefSeq (білок)
NP_000483
NP_113694
Локус (UCSC) Хр. 7: 117.29 – 117.72 Mb н/д
PubMed search [3] [4]
Вікідані
Див./Ред. для людейДив./Ред. для мишей

Цей білок за функціями належить до гідролаз, хлорних каналів, ліпопротеїнів.

Білок має сайт для зв'язування з АТФ, нуклеотидами, хлоридом. Локалізований у клітинній мембрані, мембрані ядра, ендоплазматичному ретикулумі, ендосомах.

Послідовність амінокислот
1020304050
MQRSPLEKASVVSKLFFSWTRPILRKGYRQRLELSDIYQIPSVDSADNLS
EKLEREWDRELASKKNPKLINALRRCFFWRFMFYGIFLYLGEVTKAVQPL
LLGRIIASYDPDNKEERSIAIYLGIGLCLLFIVRTLLLHPAIFGLHHIGM
QMRIAMFSLIYKKTLKLSSRVLDKISIGQLVSLLSNNLNKFDEGLALAHF
VWIAPLQVALLMGLIWELLQASAFCGLGFLIVLALFQAGLGRMMMKYRDQ
RAGKISERLVITSEMIENIQSVKAYCWEEAMEKMIENLRQTELKLTRKAA
YVRYFNSSAFFFSGFFVVFLSVLPYALIKGIILRKIFTTISFCIVLRMAV
TRQFPWAVQTWYDSLGAINKIQDFLQKQEYKTLEYNLTTTEVVMENVTAF
WEEGFGELFEKAKQNNNNRKTSNGDDSLFFSNFSLLGTPVLKDINFKIER
GQLLAVAGSTGAGKTSLLMVIMGELEPSEGKIKHSGRISFCSQFSWIMPG
TIKENIIFGVSYDEYRYRSVIKACQLEEDISKFAEKDNIVLGEGGITLSG
GQRARISLARAVYKDADLYLLDSPFGYLDVLTEKEIFESCVCKLMANKTR
ILVTSKMEHLKKADKILILHEGSSYFYGTFSELQNLQPDFSSKLMGCDSF
DQFSAERRNSILTETLHRFSLEGDAPVSWTETKKQSFKQTGEFGEKRKNS
ILNPINSIRKFSIVQKTPLQMNGIEEDSDEPLERRLSLVPDSEQGEAILP
RISVISTGPTLQARRRQSVLNLMTHSVNQGQNIHRKTTASTRKVSLAPQA
NLTELDIYSRRLSQETGLEISEEINEEDLKECFFDDMESIPAVTTWNTYL
RYITVHKSLIFVLIWCLVIFLAEVAASLVVLWLLGNTPLQDKGNSTHSRN
NSYAVIITSTSSYYVFYIYVGVADTLLAMGFFRGLPLVHTLITVSKILHH
KMLHSVLQAPMSTLNTLKAGGILNRFSKDIAILDDLLPLTIFDFIQLLLI
VIGAIAVVAVLQPYIFVATVPVIVAFIMLRAYFLQTSQQLKQLESEGRSP
IFTHLVTSLKGLWTLRAFGRQPYFETLFHKALNLHTANWFLYLSTLRWFQ
MRIEMIFVIFFIAVTFISILTTGEGEGRVGIILTLAMNIMSTLQWAVNSS
IDVDSLMRSVSRVFKFIDMPTEGKPTKSTKPYKNGQLSKVMIIENSHVKK
DDIWPSGGQMTVKDLTAKYTEGGNAILENISFSISPGQRVGLLGRTGSGK
STLLSAFLRLLNTEGEIQIDGVSWDSITLQQWRKAFGVIPQKVFIFSGTF
RKNLDPYEQWSDQEIWKVADEVGLRSVIEQFPGKLDFVLVDGGCVLSHGH
KQLMCLARSVLSKAKILLLDEPSAHLDPVTYQIIRRTLKQAFADCTVILC
EHRIEAMLECQQFLVIEENKVRQYDSIQKLLNERSLFRQAISPSDRVKLF
PHRNSSKCKSKPQIAALKEETEEEVQDTRL

Механізми функціонування ред.

Механізми функціонування CFTR детально вивчені на прикладі трансмембранного перенесення іонів хлору через апікальну мембрану холангіоцитів — клітин, що вистилають жовчні протоки. Рушійною силою для відкриття CFTR-каналу стає взаємодія молекул секретину (його можна вважати агоністом CFTR) зі своїми рецепторами на базолатеральній мембрані холангіоцитів. Ці рецептори є метаботропними, тобто функціонально зв'язаними із G-білками, через які вони і передають сигнал на фермент аденілатциклазу, що каталізує реакцію синтезу цАМФ. цАМФ із залученням протеїнкінази А фосфорилює й активує CFTR, Cl-канал якого повертає іони хлору із холангіоцитів, куди вони надійшли внаслідок функціонування Cl/НСО3−-обмінника, у простір жовчної протоки[8].

АВСС7 у патології ред.

За спадкової втрати функцій цього транспортеру внаслідок мутації відповідного гена (делеція трьох пар основ) розвивається муковісцидоз — вроджений розлад, що характеризується аномаліями у функціонуванні екзокринних залоз.

Розвиток муковісцидозу супроводжується продукцією організмом надмірно в'язкого і густого слизу на поверхнях епітелію. Це перш за все знижує здатність війчастого епітелію очищуватися від мокроти і веде до хронічної ендобронхіальної бактеріальної колонізації. Наслідками таких станів є надпродукція мокроти, важке дихання, задишка, обмеженість перенесення фізичних навантажень і врешті-решт загибель. У 85 % пацієнтів виявляють панкреатичну недостатність, яка спричиняє погану абсорбцію жирів і розлади у травленні. Як супроводжувальні стани можуть виникати цукровий діабет, кишкова непрохідність, артрити, безпліддя.

За муковісцидозу загибель клітин епітелію легень здійснюється внаслідок втрати іонного балансу, що спричиняє зниження функцій клітин зі слизовою обструкцією, порушенням обміну газів і зумовлює летальність у молодому віці.

Цей генетичний дефект виявляють приблизно у 30 000 дітей і дорослих у США; серед мешканців Кавказу муковісцидоз є одним із найбільш летальних спадкових захворювань (1/1000 новонароджених у порівнянні з 1/2500 в інших місцевостях). На 1997 р. середня тривалість життя чоловіків із цією патологією складала 32,7 років, жінок — 28,9 років. 1 із 31 американців (1 із 28 мешканців Кавказу) — а в цілому понад 10 млн людей у світі — є безсимптомними гетерозиготними носіями дефектного гена.

Див. також ред.

Примітки ред.

  1. Захворювання, генетично пов'язані з Регулятор трансмембранної провідності при муковісцидозі переглянути/редагувати посилання на ВікіДаних.
  2. Сполуки, які фізично взаємодіють з Регулятор трансмембранної провідності при муковісцидозі переглянути/редагувати посилання на ВікіДаних.
  3. Human PubMed Reference:.
  4. Mouse PubMed Reference:.
  5. HUGO Gene Nomenclature Commitee, HGNC:1884 (англ.) . Процитовано 30 листопада 2018.
  6. UniProt, P13569 (англ.) . Процитовано 30 листопада 2018.
  7. Luckie D., Wilterding J., Krha M., Krouse M. CFTR and MDR: ABC Transporters with Homologous Structure but Divergent Function // Current Genomics. — 2003. — No. 4. — P. 109—121
  8. Dean M., Hamon Y., Chimini G. The human ATP-binding cassette (ABC) transporter superfamily // 2001. — Vol. 42. — P. 1007—1017

Література ред.

  • Ostedgaard L.S., Baldursson O., Vermeer D.W., Welsh M.J., Robertson A.D. (2000). A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proc. Natl. Acad. Sci. U.S.A. 97: 5657—5662. PMID 10792060 DOI:10.1073/pnas.100588797
  • Hallows K.R., Kobinger G.P., Wilson J.M., Witters L.A., Foskett J.K. (2003). Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. Am. J. Physiol. 284: C1297—C1308. PMID 12519745 DOI:10.1152/ajpcell.00227.2002
  • Aznarez I., Chan E.M., Zielenski J., Blencowe B.J., Tsui L.-C. (2003). Characterization of disease-associated mutations affecting an exonic splicing enhancer and two cryptic splice sites in exon 13 of the cystic fibrosis transmembrane conductance regulator gene. Hum. Mol. Genet. 12: 2031—2040. PMID 12913074 DOI:10.1093/hmg/ddg215
  • Kidd J.F., Ramjeesingh M., Stratford F., Huan L.J., Bear C.E. (2004). A heteromeric complex of the two nucleotide binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) mediates ATPase activity. J. Biol. Chem. 279: 41664—41669. PMID 15284228 DOI:10.1074/jbc.M407666200
  • Lu C., Jiang C., Pribanic S., Rotin D. (2007). CFTR stabilizes ENaC at the plasma membrane. J. Cyst. Fibros. 6: 419—422. PMID 17434346 DOI:10.1016/j.jcf.2007.03.001
  • Bomberger J.M., Barnaby R.L., Stanton B.A. (2009). The deubiquitinating enzyme USP10 regulates the post-endocytic sorting of cystic fibrosis transmembrane conductance regulator in airway epithelial cells. J. Biol. Chem. 284: 18778—18789. PMID 19398555 DOI:10.1074/jbc.M109.001685