Перетворення Хаусхолдера
Перетворення Хаусхолдера (оператор Хаусхолдера) — лінійне перетворення векторного простору , що описує його віддзеркалення (симетрію) щодо гіперплощини, яка проходить через початок координат.
Було запропоноване в 1958 американським математиком Елстоном Скотом Хаусхолдером.
Застосовується в лінійній алгебрі для QR-розкладу матриці.
ВизначенняРедагувати
Якщо гіперплощина описується одиничним вектором , що є ортогональним до неї; та — скалярний добуток в , тоді
- — оператор Хаусхолдера.
Матриця Хаусхолдера має вигляд:
ВластивостіРедагувати
- Матриця Хаусхолдера є ермітовою:
- Матриця Хаусхолдера є унітарною:
- Отже вона є інволюцією: .
- Перетворення відображає точку в точку
- Матриця Хаусхолдера має одне власне значення рівне -1, що відповідає власному вектору , усі інші власні значення дорівнюють (+1).
- Визначник матриці Хаусхолдера дорівнює -1.
- Перетворення Хаусхолдера в метричному просторі зберігає відстані[джерело?].
Див. такожРедагувати
ДжерелаРедагувати
- Гантмахер Ф. Р. Теория матриц. — 5-е. — М: : Физматлит, 2010. — 559 с. — ISBN 5-9221-0524-8.(рос.)
- Ланкастер П. Теория матриц. — Москва : Наука, 1973. — 280 с.(рос.)
- Р.Хорн, Ч.Джонсон. Матричный анализ. — М: : Мир, 1989. — 653 с.(рос.)
- Alston S. Householder, Unitary Triangularization of a Nonsymmetric Matrix, Journal ACM, 5 (4), 1958, 339-342. DOI:10.1145/320941.320947