Ортоцентричний трикутник

Altitudes and orthic triangle SVG.svg

Ортотрикутник (ортоцентричний трикутник) — це трикутник Δabc, вершини якого є основами висот трикутника ∆ABC. Для ортотрикутника (для ортоцентричного трикутника) Δabc сам трикутник ∆ABC є трикутником трьох зовнішніх бісектрис. Тобто відрізки AB, BC і CA є трьома зовнішніми бісектрисами трикутника Δabc.

ВластивостіРедагувати

  • Задача Фаньяно. Ортоцентричний трикутник гострокутного трикутника АВС володіє найменшим периметром з усіх вписаних трикутників.
  • Висоти гострокутного трикутника є бісектрисами кутів його ортотрикутника (отже, ортоцентр гострого трикутника є центром кола, вписаного в його ортотрикутник).
  • Якщо точки A1, B1 і C1 на сторонах відповідно BC, AC і AB гострокутного трикутника ABC такі, що
 ,   і  ,

то   — ортотрикутник трикутника ABC.

  • Якщо навколо даного гострокутного трикутника описати коло і в трьох вершинах трикутника провести прямі, дотичні до кола, то перетин цих прямих утворює трикутник, який називається тангенціальним трикутником відносно цього трикутника.

Властивості подібності родинних трикутниківРедагувати

Властивості паралельності (антипаралельності) сторін родинних трикутниківРедагувати

  • Сторони даного гострокутного трикутника антипаралельні відповідним сторонам ортотрикутника, проти яких вони лежать.
  • Сторони тангенціального трикутника антипаралельні відповідним протилежним сторонам даного трикутника (по властивості антипаралельності дотичних до кола).
  • Сторони тангенціального трикутника паралельні відповідним сторонам ортотрикутника.
  • Якщо точки дотику вписаного в даний трикутник кола з'єднані відрізками, то вийде трикутник Жергонна. Нехай в отриманому трикутнику проведено висоти. Тоді прямі, що з'єднують підстави цих висот, паралельні сторонам вихідного трикутника. Отже, ортотрикутник трикутника Жергонна і вихідний трикутник подібні.

Інші властивостіРедагувати

  • Площа ортотрикутника дорівнює:
 

де   — площа трикутника ΔABC;   - його відповідні сторони.

  • Коло, описане навколо ортотрикутника Δabc, для самого трикутника ΔABC є окружністю Ейлера (окружністю 9 точок), тобто одночасно проходить через 3 підстави медіан останнього. Зауважимо, що ці 3 підстави медіан є вершинами додаткового трикутника для трикутника ΔABC.
  • Радіуси кола, описаного навколо даного трикутника ΔABC, проведені через його вершини, перпендикулярні відповідним сторонам ортотрикутника Δabc (Зетель, наслідок 2, §66, с. 81).

ПриміткиРедагувати