Відкрити головне меню
Опукла множина виглядає як деформоване коло. Чорний відрізок з'єднує точки x та y і розташований повністю в (зеленій) множині. Так як це виконується для будь яких точок x та y множини, то множина буде опуклою.
Приклад неопуклої множини. Так як червона частина (чорне та червоне) відрізку, що з'єднує точки x та y, розташована за межами (зеленої) множини, то множина не буде опуклою.

Опуклою множиною в евклідовому або афінному просторі називається така множина, яка разом з довільними двома точками, що належать множині, має у собі відрізок, що їх з'єднує[1].

ВизначенняРедагувати

  • Іншими словами, множина   називається опуклою, якщо для точок  , що задаються радіус-векторами  , точка:
 
  • Тобто, множина   разом з будь якими двома точками  , які належать цій множині, містить відрізок, який їх з'єднує:
 .

ПрикладиРедагувати

У просторі   опуклими множинами будуть точка, відрізок, інтервал, промінь, пряма.

У просторі   опуклим буде сам простір, будь який його лінійний підпростір, куля, опуклі множини просторів меншої вимірності. Також, опуклими будуть такі множини:

  • пряма  , що проходить через точку   в напрямку вектора  :
 ;
  • промінь  , який виходить із точки   в напрямку вектора  :
 ;
 ;
 ,
 .

Всі перелічені множини (крім кулі) є частковими випадками опуклої множини поліедру.

Чотирикутник на площині може бути опуклим і неопуклим.

Властивості опуклих множинРедагувати

Див. такожРедагувати

ПосиланняРедагувати

  1. Аналітична геометрія: Навч. посібник для студ. мат. спец. ун-тів: пер. с рус. / О. А. Борисенко, Л. М. Ушакова ; Пер. Г. Ч. Курінний. — Харків: Основа, 1993 . — 192 с.

ЛітератураРедагувати

  • Половинкин Е. С., Балашов М. В. Элементы выпуклого и сильно выпуклого анализа. — М. : ФИЗМАТЛИТ. — 416 с. — ISBN 5-9221-0499-3..