Відкрити головне меню

Метод рухливих клітинних автоматів

Метод рухливих клітинних автоматів (MCA, від англ. movable cellular automata) — це метод обчислювальної механіки деформованого твердого тіла, заснований на дискретному підході. Він поєднує переваги методу класичних клітинних автоматів і методу дискретних елементів. Важливою перевагою методу МСА є можливість моделювання руйнування матеріалу, включаючи генерацію пошкоджень, поширення тріщин, фрагментацію і перемішування речовини. Моделювання саме цих процесів викликає найбільші труднощі в методах механіки суцільних середовищ (метод скінченних елементів, метод скінченних різниць тощо), що є причиною розробки нових концепцій, наприклад, таких як перідинаміка. Відомо, що метод дискретних елементів дуже ефективно описує поведінку гранульованих середовищ. Особливості розрахунку сил взаємодії між рухомими клітинними автоматами дозволяють описувати в рамках єдиного підходу поведінку як гранульованих, так і суцільних середовищ. Так, при прагненні характерного розміру автомата до нуля формалізм методу MCA дозволяє перейти до класичних співвідношень механіки суцільного середовища.

Метод рухливих клітинних автоматів
MCA friction net.gif
Рухливі клітинні автомати активно змінюють своїх сусідів за рахунок розриву існуючих зв'язків між автоматами і утворення нових зв'язків (моделювання контактної взаємодії)
Тип методу
Континуальний/Дискретний Дискретний
Аналітичний/Чисельний Чисельний
Характеристики
Зазнав впливу Клітинний автомат, Метод дискретних елементів
Це метод Обчислювальної механіки

Основні положення методуРедагувати

 
Об'єкт (ліворуч) описується у вигляді набору взаємодіючих автоматів (у центрі). Праворуч представлено поле швидкостей автоматів.

У рамках методу MCA об'єкт моделювання описується як набір взаємодіючих елементів / автоматів. Динаміка безлічі автоматів визначається силами їх взаємодії і правилами для зміни їх стану. Еволюція цієї системи в просторі і в часі визначається рівняннями руху. Сили взаємодії та правила для зв'язаних елементів визначаються функціями відгуку автомата. Ці функції задаються для кожного автомата. Протягом руху автомата наступні нові параметри клітинного автомата розраховуються: Ri - радіус-вектор автомата; Vi - швидкість автомата;  i - кутова швидкість автомата;  i - вектор повороту автомата; mi - маса автомата; Ji - момент інерції автомата.

Нова концепція - концепція сусідівРедагувати

 
Кожен автомат має декілька сусідів

Нова концепція методу MCA заснована на уявленні стану пари автоматів (пов'язує пару взаємодіючих автоматів) у додаток до звичайного стану окремого автомата. Зауважимо що облік цього визначення дозволяє перейти від статичної сіткової концепції до концепції сусідів. В результаті цього, автомати мають можливість змінювати своїх сусідів шляхом перемикання стану (залежностей) пар.

Визначення параметрів стану пари автоматівРедагувати

Введення нового типу стану вимагає нового параметра використовується як критерію перемикання в стан пов'язані. Це визначається як параметр перекриття автоматів hij. І так, зв'язок клітинних автоматів характеризується величиною їх перекриття.

   

Початкова структура формується установкою властивостей особливого зв'язку між кожною парою сусідніх елементів.

Критерії перемикання пари автоматів у стан пов'язаніРедагувати

 
Пара автоматів ij зліва знаходяться у зв'язаному стані, справа - в незв'язаному.

У порівнянні з методом класичних клітинних автоматами в методі MCA не тільки одиничний автомат але і такожзв'язку автоматів можуть переключатися. Відповідно до концепції бістабільних автоматів вводиться два стани пари (взаємозв'язок):

пов'язані обидва автомата належать одному суцільному тілу
незв'язані кожен автомат належить різних тіл або фрагментів пошкодженого матеріалу

Отже,зміна стану зв'язку пари визначається відносним рухом автоматів, і середовище формується такими парами може бути названабістабільної середовищем.

Рівняння руху MCAРедагувати

Еволюція MCA середовища описується наступнимирівняннями трансляційного руху:

 
 
Облік сил, що діють між автоматами ij з боку їхніх сусідів.

Тут mi це маса автомата i, pij це центральна сила діє між автоматами і та j, C (ij,ik) це особливий коефіцієнт асоційований з перенесенням параметра h з пари ij до ik, ψ (αij,ik) це кут між напрямками ij і ik.

Обертальні рухи також можуть бути враховані з точністю обмеженою розміром клітинного автомата. Рівняння обертального руху можуть бути записані таким чином:

 

Тут Θij кут відносного повороту (це параметр переключення подібно hij трансляційного руху), qij(ji) це відстань від центру автомата i (j) до точки контакту з автоматом j (i) (кутовий момент), τij це парне тангенціальне взаємодія, S (ij, ik (jl)) це особливий коефіцієнт асоційований з параметром перенесення Θ від однієї пари до іншої (це схоже на C (ij, ik (jl)) з рівнянь трансляційного руху).

Слід зазначити, що рівняння повністю аналогічні рівнянням руху для багато-часткової середовища.

Визначення деформації пари автоматівРедагувати

 
Обертання тіла як цілого не призводить до деформації між автоматами

Зсув пари автоматів Безрозмірний параметр деформації для усуненняi j пари автоматів записується як:

 

У цьому випадку:

 

де Δt тимчасової крок, Vnij - залежна швидкість. Обертання пари автоматів може бути пораховано аналогічно з зв'язком останнього змішання.

Опис необоротної деформації в методі MCAРедагувати

 
Деформація визначається величиною перекриття автоматів
 
Існує два типи функцій відгуку автоматів

Параметр εij використовується як міра деформації автомата i взаємодіє з автоматом j. Де qij - відстань від центру автомата i до точки його контакту з автоматом j; Ri = di / 2 (di - розмір автомата i).

Наприклад титановий зразок при циклічному навантаженні (розтяг-стиск). Діаграма деформування показана на наступному малюнку:

схема навантаження діаграма деформування
   
(Червоні точки - експериментальні дані)

Переваги методу MCAРедагувати

Завдяки рухливості кожного автоматаметод MCA дозволяє безпосередньо враховувати такі події як:

  • Перемішування мас
  • Ефект проникнення
  • Хімічні реакції
  • Інтенсивні деформації
  • Фазові перетворення
  • Накопичення ушкоджень
  • Фрагментація і тріщини
  • Генерація і розвиток ушкоджень

Використовуючи різні граничні умови різних типів (жорсткі, пружні, в'язко-пружні, т.д.) можна імітувати різні властивості навколишнього середовища, що містить модельовану систему. Можна моделювати різні режими механічного навантаження (розтяг, стиск, зсув, т.д.) за допомогою налаштувань додаткових станів на кордонах.

ЛітератураРедагувати

Програмне забезпеченняРедагувати

  • MCA software package
  • Програма для моделювання матеріалів в дискретно континуальному підході «FEM+MCA»: Номер державної реєстрації в ОФАП (Патент): 50208802297 / Смолин А. Ю., Зелепугин С. А., Добрынин С. А.; заявник та організація-розробник рос. ГОУ ВПО Томский государственный университет. — зарег. 28.11.2008; свідоцтво ОФАП № 11826 від 01.12.2008.

Дивіться такожРедагувати