Відкрити головне меню

Континуанта (математика)

ОзначенняРедагувати

nконтинуанта   рекурсивно визначається так

 
 
 

ВластивостіРедагувати

  • Континуанту   можна обчислити взявши суму всіх можливих добутків x1,...,xn, в яких вилучена будь-яка кількість неперетинних пар послідовних елементів (Правило Ейлера). Наприклад,
     
З цього випливає, що континуанти інваріантні щодо обернення порядку невідомих:  
  • Континуанту можна обчислити як визначник тридіагональної матриці:
     
  •  , це (n+1)-ше число Фібоначчі.
  •  
  • Співвідношення континуант представляє (підхідні дроби) неперервний дріб так:
     
  • Виконується така матрична тотожність:
     .
    • Для визначників це означає, що
       
    • і також
       

УзагальненняРедагувати

Узагальнене визначення визначає континуанту за допомогою трьох послідовностей a, b і c, так що K(n) є многочленом від a1,...,an, b1,...,bn−1 і c1,...,cn−1. Тут рекурентне співвідношення набуває вигляду

 
 
 

Оскільки br і cr входять в K лише як добуток brcr, то без втрати загальності можна вважати, що всі br рівні 1.

Узагальнена котинуанта є визначником тридіагональної матриці

 

ReferencesРедагувати

  • Thomas Muir (1960). A treatise on the theory of determinants. Dover Publications. с. 516–525. 
  • Cusick, Thomas W.; Flahive, Mary E. (1989). The Markoff and Lagrange Spectra. Mathematical Surveys and Monographs 30. Providence, RI: American Mathematical Society. с. 89. ISBN 0-8218-1531-8. Zbl 0685.10023. 
  • George Chrystal (1999). Algebra, an Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges: Pt. 1. American Mathematical Society. с. 500. ISBN 0-8218-1649-7.