Відкрити головне меню

Комутативне кільце — кільце, в якому операція множення є комутативною.

Вивченням кілець взагалі займається теорія кілець (частина абстрактної алгебри). А вивченням комутативних кілець, їх ідеалів та модулів над такими кільцями займається комутативна алгебра.

Алгебрична геометрія та Алгебрична теорія чисел базуються саме на комутативній алгебрі.

Деякі підвиди комутативних кілець (перечислені в порядку від загальніших до більш спеціалізованих):

комутативне кільцеобласть цілісностіЦілозамкнена областьфакторіальне кільцекільце головних ідеалівевклідове кільцеполе.

Зміст

Визначення і прикладиРедагувати

ВизначенняРедагувати

Для отримання докладнішої інформації з цієї теми, див. Кільце (алгебра).

Кільце це множина R, що містить додатково дві бінарні операції, тобто операції, що поєднують будь-які два елементи кільця у третій елемент. Ці операції називаються додавання і множення і як правило позначаються символами "+" і "⋅"; тобто a + b і ab. Щоб утворювати кільце ці операції повинні задовольняти декільком властивостям: кільце повинно бути абелевою групою відносно додавання, а також моноїдом відносно множення, де множення є дистрибутивним відносно додавання; тобто, a ⋅ (b + c) = (ab) + (ac). Одиничні елементи для додавання і множення позначаються як 0 і 1, відповідно.

Якщо множення ж комутативним, тобто

ab = ba,

тоді кільце R називають комутативним.

ПрикладиРедагувати

Важливим прикладом, в певному сенсі вирішальним, є кільце цілих чисел Z із двома операціями додавання і множення. Оскільки множення цілих чисел є комутативною операцією, це комутативне кільце. Воно зазвичай позначається Z, що є скороченням німецького слова Zahlen (числа).

Поле це комутативне кільце, де   і кожен не нульовий елемент a є інвертованим; тобто, має мультиплікативне обернене число b, таке що ab = 1. Тому, за визначенням, будь-яке поле є комутативним кільцем. Раціональні, дійсні і комплексні числа утворюють поля.

Якщо R це дане комутативне кільце, тоді множина всіх поліномів для змінної X, коефіцієнти якого належать R утворюють кільце поліномів, що позначається як R[X]. Те саме буде виконуватися і для декількох змінних.

Якщо V це деякий Топологічний простір, наприклад підмножина деякої Rn, неперервні функції над V дійсних або комплексних змінних утворюють комутативне кільце. Те саме буде вірним і для диференційовних або голоморфні функції, коли обидва поняття визначені такими, що є комплексним многовидом для V.

Див. такожРедагувати

ДжерелаРедагувати