Калібрування векторного потенціалу
Калібрува́ння ве́кторного потенціа́лу — накладення додаткових умов, що дозволяють однозначно обчислити векторний потенціал електромагнітного поля () під час розв'язування тих чи інших фізичних задач. Накладені умови є штучними і покликані спростити математичні перетворення. Найбільшого поширення набули калібрування Кулона та калібрування Лоренца, але існують і застосовуються й інші калібрування.
Можливість та сенс калібрування
ред.При введенні векторного ( ) та скалярного ( ) потенціалів електромагнітного поля виникає неоднозначність, що не створює жодних проблем фундаментального плану, але потребує вирішення для проведення розрахунків у конкретних задачах. А саме, перетворення
- ,
- ,
де — довільна скалярна функція координат ( ) та часу ( ), не змінюють вигляду рівнянь Максвелла, отже, допустимі з погляду фізики. Необхідно зупинитися на якомусь виборі цієї функції, причому це можна зробити з міркувань математичної зручності. На практиці фіксують не функцію (за попередньо введених потенціалів), а накладають деяку додаткову умову на самі потенціали.
Приклади калібрувань
ред.Кулонівське калібрування
ред.Куло́нівське калібрува́ння — вибір векторного потенціалу магнітного поля ( ) з додатковою умовою
Це калібрування застосовують для розгляду нерелятивістських магнітостатичних задач.
Калібрування Лоренца
ред.Калібрува́ння Ло́ренца[1] — вибір векторного потенціалу електромагнітного поля з умовою
- , де — електростатичний потенціал.
Це калібрування застосовується для розгляду динамічних задач. Калібрування Лоренца зберігається при перетвореннях Лоренца і в коваріантній формі його можна записати як
Калібрування Ландау
ред.Калібрува́ння Ланда́у — вибір векторного потенціалу магнітного поля у вигляді , де — магнітна індукція, а — орт у напрямку осі .
Використовується для зручності при розв'язуванні рівняння Шредінгера в магнітному полі, оскільки дозволяє розділити змінні в декартовій системі координат і отримати так звані рівні Ландау.
Симетричне калібрування
ред.Симетри́чне калібрува́ння — вибір векторного потенціалу магнітного поля у вигляді , де — вектор магнітного поля, а — радіус-вектор.
Калібрування Лондонів
ред.Калібрува́ння Ло́ндонів — вибір векторного потенціалу магнітного поля так, щоб виконувалась умова
, де — вектор нормалі до поверхні надпровідника.
У цьому калібруванні спрощується запис рівняння Лондонів для лінійної електродинаміки надпровідників.
Калібрування Вейля
ред.Калібрува́ння Ве́йля — вибір векторного потенціалу магнітного поля так, щоб виконувалась умова
Інша назва — калібрування Гамільтона
Калібрування Пуанкаре
ред.Калібрува́ння Пуанкаре́ (мультиполя́рне калібрува́ння) — вибір векторного потенціалу магнітного поля так, щоб виконувалась умова
Калібрування Фока — Швінгера
ред.Калібрува́ння Фока — Шві́нгера — вибір векторного потенціалу магнітного поля так, щоб виконувалась умова
- ,
або
Калібрування Дірака
ред.Див. також
ред.Примітки
ред.- ↑ Вперше запропонував Людвигом В. Лоренцем.