Багатовимірний нормальний розподіл (чи багатовимірний гаусів розподіл) у теорії ймовірностей — це узагальнення одновимірного нормального розподілу для випадку із багатьма вимірами. Відповідно до одного із визначень стверджують, що вектор випадкових величин має k-варіативний нормальний розподіл якщо кожна лінійна комбінація його k компонент має одновимірний нормальний розподіл. В основному його важливість випливає із узагальнення центральної граничної теореми для багатьох вимірів. Багатовимірний нормальний розподіл часто використовують аби описати, принаймні наближено, будь-яку множину (можливо) корельованих випадкових величин із дійсними значенням, кожна з яких скупчується довкола середнього значення.

Багатовимірний нормальний розподіл

Множина точок, що представляють елементарні події багатовимірного нормального розподілу із і , разом з якими показано еліпс розміром в 3-сігми, два маргінальні розподіли і дві 1-вимірні гістограми.
Параметри μRkкоефіцієнт зсуву
ΣRk×kковаріаційна матриця (додатноозначена матриця)
Носій функції xμ + span(Σ) ⊆ Rk
Розподіл імовірностей
існує лише за умови, що Σ є додатньоозначена матриця
Функція розподілу ймовірностей (cdf) (не має аналітичного виразу)
Середнє μ
Мода μ
Дисперсія Σ
Ентропія
Твірна функція моментів (mgf)
Характеристична функція

Позначення і параметризація ред.

Багатовимірний нормальний розподіл k-вимірного вектору випадкових величин X = [X1, X2, …, Xk]T може записуватися у формі наступної нотації:

 

або із метою явно зазначити, що X є k-вимірним:

 

із k-вимірним вектором середніх значень

 

і матрицею коваріацій  

 

Визначення ред.

Випадковий вектор   має багатомірний нормальний розподіл, якщо виконується одне з наступних еквівалентних умов:

  • Довільна лінійна комбінація компонентів вектора   має нормальний розподіл є константою.
  • Існує вектор незалежних стандартних нормальних випадкових величин  , дійсний вектор   і матриця   розмірності  , такі що:
 .
 .

Зауваження ред.

  • Якщо розглядати тільки розподілу з невиродженою коваріаційною матрицею, то еквівалентним буде також наступне визначення:
Існує вектор   і додатно визначена симетрична матриця   розмірності  , такі що щільність ймовірності вектора   має вид:
 ,
де  визначник матриці  , а   — матриця зворотна до  


  • Вектор   є вектором середніх значень  , а   — його коваріаційна матриця
  • У випадку  , багатовимірний нормальний розподіл зводиться до звичайного нормального розподілу.
  • Якщо випадковий вектор   має багатовимірний нормальний розподіл, то пишуть  .

Властивості ред.

  • Якщо вектор   має багатовимірний нормальний розподіл, то його компоненти   мають одновимірний нормальний розподіл. Зворотне, узагалі говорячи, невірно (див. приклад [1] [Архівовано 15 грудня 2012 у Wayback Machine.])!
  • Якщо випадкові величини   мають одномірний нормальний розподіл і спільно незалежні, те випадковий вектор   має багатомірний нормальний розподіл. Матриця коваріацій   такого вектора діагональна.
  • Якщо   має багатомірний нормальний розподіл, і його компоненти попарно некорельовані, то вони незалежні. Однак, якщо тільки компоненти   мають одномірний нормальний розподіл і попарно не корелюють, те звідси не випливає, що вони незалежні.
Контрприклад. Нехай  , а   з рівними ймовірностями. Тоді якщо  , те кореляція   і   дорівнює нулю. Однак, ці випадкові величини залежні.
  • Багатомірний нормальний розподіл стійко щодо лінійних перетворень. Якщо  , а   — довільна матриця розмірності  , то
 .

Функція густини ред.

 
Спільна функція густини біваріативного нормального розподілу

Не вироджений випадок ред.

Багатовимірний нормальний розподіл називають "не виродженим" коли його симетрична матриця коваріацій   є додатньоозначеною. В такому випадку розподіл має функцію густини:[1]

 

де   це k-вимірний вектор стовпець дійсних чисел і   це детермінант для  , відомий також як узагальнена дисперсія. Вищенаведене рівняння спрощується до аналогічного рівняння, що відповідає одновимірному нормальному розподілу якщо   є матрицею розміром   (тобто єдиним дійсним числом).

Циркулярно-симетрична версія комплексного нормального розподілу має дещо відмінну форму.

Кожен окіл ізо-густини—окіл точок в k-вимірному просторі, в кожній з яких буде деяке стале значення густини —є еліпсом або його узагальненням для більших вимірів; оскільки багатовимірний нормальний розподіл є особливим випадком еліптичних розподілів.

В описовій статистиці   відомо як відстань Махаланобіса, яка задає відстань обраної точки   від середнього  . Зауважте, що у випадку коли  , розподіл зводиться до одновимірного нормального розподілу, і відстань Махаланобіса зводиться до абсолютного значення стандартної оцінки.

Біваріативний випадок ред.

У 2-вимірному несингулярному випадку (k = rank(Σ) = 2), функція густини імовірності для вектору [X Y]′ є наступною:

 

де ρ — кореляція між X і Y і де   і  . В такому випадку,

 

У біваріативному випадку, перша еквівалентна умова встановлення нормальності багатовимірного розподілу може бути менш сувора: для того, щоб зробити висновок чи є вектор [X Y]′ біваріативно нормальним достатньо перевірити чи зліченно велика кількість відмінних лінійних комбінацій X і Y є нормально розподілені.[2]

Біваріативні околи ізо-густини на площині x,y є еліпсами. Із збільшенням абсолютного значення коефіцієнту кореляції ρ, ці околи будуть сплющуватися до наступної прямої :

 

Це пояснюється тим, що якщо в даному виразі sgn(ρ) замінити на ρ, воно є найкращим лінійним незміщеним передбаченням[en] для Y, що задане значенням X.[3]

Багатомірна центральна гранична теорема ред.

Нехай   — послідовність незалежних і однаково розподілених випадкових векторів, кожний з який має середнє   і невироджену матрицю коваріацій   . Позначимо через   вектор часткових сум. Тоді при   має місце збіжність розподілів векторів  , де   має розподіл  . В умовах багатовимірної центральної граничної теореми розподіл будь-яких неперервних функцій   збігається до розподілу  . Як   нам буде потрібна тільки  .

Наслідок ред.

В умовах багатовимірної центральної граничної теореми має місце збіжність  .

Примітки ред.

  1. UIUC, Lecture 21. The Multivariate Normal Distribution [Архівовано 23 червня 2016 у Wayback Machine.], 21.5:"Finding the Density".
  2. Hamedani, G. G.; Tata, M. N. (1975). On the determination of the bivariate normal distribution from distributions of linear combinations of the variables. The American Mathematical Monthly. 82 (9): 913—915. doi:10.2307/2318494.
  3. Wyatt, John. Linear least mean-squared error estimation (PDF). Lecture notes course on applied probability. Архів оригіналу (PDF) за 10 жовтня 2015. Процитовано 23 січня 2012.